Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1223717, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37533825

RESUMO

Introduction: High quality corn silage depends on factors such as corn type, stage of crop development at harvest time, fermentation time, in addition to use or not of inoculants. This study aimed to investigate the impact of maturity stage, bacterial inoculation, and storage time on fermentation, aerobic stability, and nutritional characteristics of flint corn silage and their implications for corn silage management. Methods: A flint corn hybrid was harvested very early, early, and medium (at 250, 300 and 350 g dry matter (DM)/kg as fed, respectively) and ensiled in mini-silos without (control) or with Lentilactobacillus buchneri CNCM I-4323 at 1 × 105 cfu/g for 120, 240 and 360 d to investigate how these factors interact with each other. Results and discussion: There was only a small increase (7 g/kg starch; p = 0.003) in starch digestibility (starch-D) in the silages stored for 360 d when compared to that stored for 240 d, but with no difference for 120 d. Despite the reduced starch-D (526 vs. 694 g/kg starch; p < 0.001), silages produced from medium harvest had higher (p < 0.001) starch content (317 vs. 137 g/kg DM) and higher amount of digestible starch (169 vs. 98.5 g/kg DM; p < 0.001) compared to very early harvest. The 2-way interactions (inoculation × storage time and maturity × storage time) showed that inoculation of corn silage with L. buchneri increased (p < 0.001) the aerobic stability, and that more mature crop silage had higher aerobic stability (140 h; p = 0.036) than the others (118 and 48.5 h for those silages from very early and early harvest). Conclusion: The storage for a longer time (>120 d) with the goal of increasing silage digestibility did not occur. Harvesting whole-crop flint corn with 300 to 350 g/kg DM is desirable to have higher DM yield and starch accumulation. Inoculation with L. buchneri is recommended to preserve the silage against aerobic deterioration. This study has shown the importance of harvesting flint corn at the right time, and the need for inoculation with L. buchneri to ensure greater yield, starch accumulation, and silage preservation, if 120 days of storage are not exceeded.

2.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37402612

RESUMO

Our objective was to evaluate the effects of feeding 3-nitrooxypropanol (3-NOP; Bovaer, DSM Nutritional Products) at two levels on methane emissions, nitrogen balance, and performance by feedlot cattle. In experiment 1, a total of 138 Nellore bulls (initial body weight, 360 ± 37.3 kg) were housed in pens (27 pens with either 4 or 5 bulls per pen) and fed a high-concentrate diet for 96 d, containing 1) no addition of 3-NOP (control), 2) inclusion of 3-NOP at 100 mg/kg dry matter (DM), and 3) inclusion of 3-NOP at 150 mg/kg DM. No adverse effects of 3-NOP were observed on DM intake (DMI), animal performance, and gain:feed (P > 0.05). In addition, there was no effect (P > 0.05) of 3-NOP on carcass characteristics (subcutaneous fat thickness and rib eye area). In experiment 2, 24 bulls (initial BW, 366 ± 39.6 kg) housed in 12 pens (2 bulls/pen) from experiment 1 were used for CH4 measurements and nitrogen balance. Irrespective of the level, 3-NOP consistently decreased (P < 0.001) animals' CH4 emissions (g/d; ~49.3%), CH4 yield (CH4/DMI; ~40.7%) and CH4 intensity (CH4/average daily gain; ~38.6%). Moreover, 3-NOP significantly reduced the gross energy intake lost as CH4 by 42.5% (P < 0.001). The N retention: N intake ratio was not affected by 3-NOP (P = 0.19). We conclude that feeding 3-NOP is an effective strategy to reduce methane emissions, with no impairment on feedlot cattle performance.


During fiber digestion in the rumen, enteric methane is produced. Methane is a potent greenhouse gas. Recently several studies have focused on developing synthetic compounds and their utilization as specific inhibitors of methanogenesis. 3-Nitrooxypropanol is a structural compound that can help to mitigate CH4 emissions. The objective of this study was to evaluate the effects of feeding 3-nitrooxypropanol (3-NOP; Bovaer, DSM Nutritional Products) at two levels on methane emissions, nitrogen balance, and performance by feedlot cattle. No effect of 3-NOP on animal performance and N balance was found. However, regarding CH4 production 3-NOP consistently decreased (P < 0.001) animals' CH4 emissions (g/d; ~49.3%), methane yield (CH4/dry matter intake; ~40.7%), and CH4 intensity (CH4/average daily gain; ~38.6%). This study provides information on the potential role of 3-NOP on reducing CH4 emissions from feedlot cattle without reducing animal performance.


Assuntos
Suplementos Nutricionais , Metano , Bovinos , Animais , Masculino , Suplementos Nutricionais/análise , Clima Tropical , Ração Animal/análise , Dieta/veterinária , Nitrogênio/farmacologia , Rúmen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA