Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0405823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358282

RESUMO

The export of peptides or proteins is essential for a variety of important functions in bacteria. Among the diverse protein-translocation systems, peptidase-containing ABC transporters (PCAT) are involved in the maturation and export of quorum-sensing or antimicrobial peptides in Gram-positive bacteria and of toxins in Gram-negative organisms. In the multicellular and diazotrophic cyanobacterium Nostoc PCC 7120, the protein HetC is essential for the differentiation of functional heterocysts, which are micro-oxic and non-dividing cells specialized in atmospheric nitrogen fixation. HetC shows similarities to PCAT systems, but whether it actually acts as a peptidase-based exporter remains to be established. In this study, we show that the N-terminal part of HetC, encompassing the peptidase domain, displays a cysteine-type protease activity. The conserved catalytic residues conserved in this family of proteases are essential for the proteolytic activity of HetC and the differentiation of heterocysts. Furthermore, we show that the catalytic residue of the ATPase domain of HetC is also essential for cell differentiation. Interestingly, HetC has a cyclic nucleotide-binding domain at its N-terminus which can bind ppGpp in vitro and which is required for its function in vivo. Our results indicate that HetC is a peculiar PCAT that might be regulated by ppGpp to potentially facilitate the export of a signaling peptide essential for cell differentiation, thereby broadening the scope of PCAT role in Gram-negative bacteria.IMPORTANCEBacteria have a great capacity to adapt to various environmental and physiological conditions; it is widely accepted that their ability to produce extracellular molecules contributes greatly to their fitness. Exported molecules are used for a variety of purposes ranging from communication to adjust cellular physiology, to the production of toxins that bacteria secrete to fight for their ecological niche. They use export machineries for this purpose, the most common of which energize transport by hydrolysis of adenosine triphosphate. Here, we demonstrate that such a mechanism is involved in cell differentiation in the filamentous cyanobacterium Nostoc PCC 7120. The HetC protein belongs to the ATP-binding cassette transporter superfamily and presumably ensures the maturation of a yet unknown substrate during export. These results open interesting perspectives on cellular signaling pathways involving the export of regulatory peptides, which will broaden our knowledge of how these bacteria use two cell types to conciliate photosynthesis and nitrogen fixation.


Assuntos
Anabaena , Nostoc , Nostoc/genética , Nostoc/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Anabaena/metabolismo , Guanosina Tetrafosfato , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Peptídeos/metabolismo , Diferenciação Celular , Regulação Bacteriana da Expressão Gênica
2.
Mol Microbiol ; 119(4): 492-504, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36756754

RESUMO

Under nitrogen-limiting conditions, the filamentous cyanobacterium Nostoc PCC7120 differentiates nitrogen-fixing heterocysts at semi-regular intervals along filaments generating a periodic pattern of two distinct cell types. Heterocysts are micro-oxic cells that host the oxygen-sensitive nitrogenase allowing two antagonistic activities to take place simultaneously. Although several factors required to control the differentiation process are known, the molecular mechanisms engaged have only been elucidated for a few of them. The patB (cnfR) gene has been shown to be essential for heterocyst formation and nitrogen fixation in this cyanobacterium, but its function remains to be clarified. Here, we show that PatB acts as a direct transcriptional regulator of genes required for nitrogenase production and activity. The DNA-binding activity of PatB does not depend on micro-oxia as it interacts with its target promoters under aerobic conditions both in vitro and in vivo. The absence of the DNA-binding domain of PatB can be rescued in the heterocyst but not in the vegetative cell. Furthermore, the putative ferredoxin domain of PatB is not essential to its interaction with DNA. The patB gene is widely conserved in cyanobacterial genomes and its function can be pleiotropic since it is not limited to nitrogen fixation control.


Assuntos
Anabaena , Nostoc , Proteínas de Bactérias/metabolismo , Nostoc/genética , Nostoc/metabolismo , Fixação de Nitrogênio/genética , Nitrogenase/metabolismo , Nitrogênio/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Anabaena/metabolismo
3.
Mol Genet Genomics ; 297(4): 999-1015, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35577979

RESUMO

The genetically regulated pattern of heterocyst formation in multicellular cyanobacteria represents the simplest model to address how patterns emerge and are established, the signals that control them, and the regulatory pathways that act downstream. Although numerous factors involved in this process have been identified, the mechanisms of action of many of them remain largely unknown. The aim of this study was to identify specific relationships between 14 factors required for cell differentiation and pattern formation by exploring their putative physical interactions in the cyanobacterium model Nostoc sp. PCC 7120 and by probing their evolutionary conservation and distribution across the cyanobacterial phylum. A bacterial two-hybrid assay indicated that 10 of the 14 factors studied here are engaged in more than one protein-protein interaction. The transcriptional regulator PatB was central in this network as it showed the highest number of binary interactions. A phylum-wide genomic survey of the distribution of these factors in cyanobacteria showed that they are all highly conserved in the genomes of heterocyst-forming strains, with the PatN protein being almost restricted to this clade. Interestingly, eight of the factors that were shown to be capable of protein interactions were identified as key elements in the evolutionary genomics analysis. These data suggest that a network of 12 proteins may play a crucial role in heterocyst development and patterning. Unraveling the physical and functional interactions between these factors during heterocyst development will certainly shed light on the mechanisms underlying pattern establishment in cyanobacteria.


Assuntos
Regulação Bacteriana da Expressão Gênica , Nostoc , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genômica , Nostoc/genética , Nostoc/metabolismo
5.
J Mol Biol ; 434(7): 167519, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35240126

RESUMO

Efficient cell division of Gram-negative bacteria requires the presence of the Tol-Pal system to coordinate outer membrane (OM) invagination with inner membrane invagination (IM) and peptidoglycan (PG) remodeling. The Tol-Pal system is a trans-envelope complex that connects the three layers of the cell envelope through an energy-dependent process. It is composed of the three IM proteins, TolA, TolQ and TolR, the periplasmic protein TolB and the OM lipoprotein Pal. The proteins of the Tol-Pal system are dynamically recruited to the cell septum during cell division. TolA, the central hub of the Tol-Pal system, has three domains: a transmembrane helix (TolA1), a long second helical periplasmic domain (TolA2) and a C-terminal globular domain (TolA3). The TolQR complex uses the PMF to energize TolA, allowing its cyclic interaction via TolA3 with the OM TolB-Pal complex. Here, we confirm that TolA2 is sufficient to address TolA to the site of constriction, whereas TolA1 is recruited by TolQ. Analysis of the protein localization as function of the bacterial cell age revealed that TolA and TolQ localize earlier at midcell in the absence of the other Tol-Pal proteins. These data suggest that TolA and TolQ are delayed from their septal recruitment by the multiple interactions of TolA with TolB-Pal in the cell envelope providing a new example of temporal regulation of proteins recruitment at the septum.


Assuntos
Proteínas da Membrana Bacteriana Externa , Divisão Celular , Proteínas de Escherichia coli , Escherichia coli , Lipoproteínas , Peptidoglicano , Proteínas da Membrana Bacteriana Externa/metabolismo , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo
6.
Life (Basel) ; 10(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256109

RESUMO

Cyanobacteria are highly diverse, widely distributed photosynthetic bacteria inhabiting various environments ranging from deserts to the cryosphere. Throughout this range of niches, they have to cope with various stresses and kinds of deprivation which threaten their growth and viability. In order to adapt to these stresses and survive, they have developed several global adaptive responses which modulate the patterns of gene expression and the cellular functions at work. Sigma factors, two-component systems, transcriptional regulators and small regulatory RNAs acting either separately or collectively, for example, induce appropriate cyanobacterial stress responses. The aim of this review is to summarize our current knowledge about the diversity of the sensors and regulators involved in the perception and transduction of light, oxidative and thermal stresses, and nutrient starvation responses. The studies discussed here point to the fact that various stresses affecting the photosynthetic capacity are transduced by common mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA