Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
PLoS One ; 19(2): e0297032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354111

RESUMO

The lethally maltreated body of Vittrup Man was deposited in a Danish bog, probably as part of a ritualised sacrifice. It happened between c. 3300 and 3100 cal years BC, i.e., during the period of the local farming-based Funnel Beaker Culture. In terms of skull morphological features, he differs from the majority of the contemporaneous farmers found in Denmark, and associates with hunter-gatherers, who inhabited Scandinavia during the previous millennia. His skeletal remains were selected for transdisciplinary analysis to reveal his life-history in terms of a population historical perspective. We report the combined results of an integrated set of genetic, isotopic, physical anthropological and archaeological analytical approaches. Strontium signature suggests a foreign birthplace that could be in Norway or Sweden. In addition, enamel oxygen isotope values indicate that as a child he lived in a colder climate, i.e., to the north of the regions inhabited by farmers. Genomic data in fact demonstrates that he is closely related to Mesolithic humans known from Norway and Sweden. Moreover, dietary stable isotope analyses on enamel and bone collagen demonstrate a fisher-hunter way of life in his childhood and a diet typical of farmers later on. Such a variable life-history is also reflected by proteomic analysis of hardened organic deposits on his teeth, indicating the consumption of forager food (seal, whale and marine fish) as well as farmer food (sheep/goat). From a dietary isotopic transect of one of his teeth it is shown that his transfer between societies of foragers and farmers took place near to the end of his teenage years.


Assuntos
Emigrantes e Imigrantes , Proteômica , Humanos , Masculino , Criança , Animais , Ovinos , Adolescente , Agricultura/história , Isótopos de Oxigênio , Dinamarca
2.
Nature ; 625(7994): 312-320, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200293

RESUMO

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Assuntos
Asiático , População Europeia , Genoma Humano , Seleção Genética , Humanos , Afeto , Agricultura/história , Alelos , Doença de Alzheimer/genética , Ásia/etnologia , Asiático/genética , Diabetes Mellitus/genética , Europa (Continente)/etnologia , População Europeia/genética , Fazendeiros/história , Loci Gênicos/genética , Predisposição Genética para Doença , Genoma Humano/genética , História Antiga , Migração Humana , Caça/história , Família Multigênica/genética , Fenótipo , Biobanco do Reino Unido , Herança Multifatorial/genética
4.
Genome Biol ; 24(1): 187, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582787

RESUMO

BACKGROUND: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 × data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function. RESULTS: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection. CONCLUSIONS: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.


Assuntos
Lobos , Cães , Animais , Lobos/genética , Mapeamento Cromossômico , Alelos , Polimorfismo de Nucleotídeo Único , Nucleotídeos , Demografia
5.
Nat Commun ; 14(1): 4020, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463880

RESUMO

Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.


Assuntos
Golfinho Nariz-de-Garrafa , Genética Populacional , Animais , Genômica , Paleontologia , Golfinho Nariz-de-Garrafa/genética , Ecossistema
6.
Evol Lett ; 7(1): 24-36, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37065434

RESUMO

Tropical islands are renowned as natural laboratories for evolutionary study. Lineage radiations across tropical archipelagos are ideal systems for investigating how colonization, speciation, and extinction processes shape biodiversity patterns. The expansion of the island thrush across the Indo-Pacific represents one of the largest yet most perplexing island radiations of any songbird species. The island thrush exhibits a complex mosaic of pronounced plumage variation across its range and is arguably the world's most polytypic bird. It is a sedentary species largely restricted to mountain forests, yet it has colonized a vast island region spanning a quarter of the globe. We conducted a comprehensive sampling of island thrush populations and obtained genome-wide SNP data, which we used to reconstruct its phylogeny, population structure, gene flow, and demographic history. The island thrush evolved from migratory Palearctic ancestors and radiated explosively across the Indo-Pacific during the Pleistocene, with numerous instances of gene flow between populations. Its bewildering plumage variation masks a biogeographically intuitive stepping stone colonization path from the Philippines through the Greater Sundas, Wallacea, and New Guinea to Polynesia. The island thrush's success in colonizing Indo-Pacific mountains can be understood in light of its ancestral mobility and adaptation to cool climates; however, shifts in elevational range, degree of plumage variation and apparent dispersal rates in the eastern part of its range raise further intriguing questions about its biology.

7.
Nat Med ; 29(5): 1191-1200, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106166

RESUMO

Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.


Assuntos
Anemia , Eritropoetina , Animais , Humanos , Camundongos , Anemia/genética , Eritropoese/genética , Eritropoetina/genética , Rim/metabolismo , RNA/metabolismo
8.
Bioinformatics ; 39(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36637211

RESUMO

MOTIVATION: Machine learning (ML) methods are motivated by the need to automate information extraction from large datasets in order to support human users in data-driven tasks. This is an attractive approach for integrative joint analysis of vast amounts of omics data produced in next generation sequencing and other -omics assays. A systematic assessment of the current literature can help to identify key trends and potential gaps in methodology and applications. We surveyed the literature on ML multi-omic data integration and quantitatively explored the goals, techniques and data involved in this field. We were particularly interested in examining how researchers use ML to deal with the volume and complexity of these datasets. RESULTS: Our main finding is that the methods used are those that address the challenges of datasets with few samples and many features. Dimensionality reduction methods are used to reduce the feature count alongside models that can also appropriately handle relatively few samples. Popular techniques include autoencoders, random forests and support vector machines. We also found that the field is heavily influenced by the use of The Cancer Genome Atlas dataset, which is accessible and contains many diverse experiments. AVAILABILITY AND IMPLEMENTATION: All data and processing scripts are available at this GitLab repository: https://gitlab.com/polavieja_lab/ml_multi-omics_review/ or in Zenodo: https://doi.org/10.5281/zenodo.7361807. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Multiômica , Neoplasias , Humanos , Neoplasias/genética , Aprendizado de Máquina , Genoma
9.
Elife ; 112022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537881

RESUMO

Ancient genome sequencing technologies now provide the opportunity to study natural selection in unprecedented detail. Rather than making inferences from indirect footprints left by selection in present-day genomes, we can directly observe whether a given allele was present or absent in a particular region of the world at almost any period of human history within the last 10,000 years. Methods for studying selection using ancient genomes often rely on partitioning individuals into discrete time periods or regions of the world. However, a complete understanding of natural selection requires more nuanced statistical methods which can explicitly model allele frequency changes in a continuum across space and time. Here we introduce a method for inferring the spread of a beneficial allele across a landscape using two-dimensional partial differential equations. Unlike previous approaches, our framework can handle time-stamped ancient samples, as well as genotype likelihoods and pseudohaploid sequences from low-coverage genomes. We apply the method to a panel of published ancient West Eurasian genomes to produce dynamic maps showcasing the inferred spread of candidate beneficial alleles over time and space. We also provide estimates for the strength of selection and diffusion rate for each of these alleles. Finally, we highlight possible avenues of improvement for accurately tracing the spread of beneficial alleles in more complex scenarios.


Analyzing the genomes of our ancient ancestors can reveal how certain traits spread through the human population over the course of evolution. Mutations that make individuals better equipped to survive their environment are more likely to be passed on to the next generation and become more common. For example, a genetic variant that enables adult people to digest sugars in dairy products has become more common in humans over time. Yet evolution does not only happen across time: it transverses space as well. Modeling the geographic spread of such genetic mutations is challenging using existing methods. To overcome this, Muktupavela et al. developed a new computational method that uses modern and ancient human genomes to study the evolution of specific genetic variants across space and time. The tool can determine where certain variants first emerged, how quickly they spread across geographic areas, and how rapidly they became prevalent in human populations. Muktupavela et al. applied their new method, which was based on a previously published framework, to track the spread of two common genetic variations that have previously been reported to be subject to natural selection: one that allows adult humans to digest dairy products, and another associated with skin pigmentation. They found that the mutation that enabled dairy consumption originated around what is now southwestern Russia or eastern Ukraine. The variation then spread westward, becoming increasingly more common over the course of the Holocene. The mutation related to skin pigmentation emerged further south than the dairy-related variation, and then also spread westward. Massive human migrations during the Neolithic and Bronze Age eras may have helped disperse both variants. The model developed by Muktupavela et al. could help scientists track the geographic spread of other genetic variants in human populations, as well as provide new insights into how humans adapt to changing environmental conditions. Incorporating major events into the model, like mass migrations or glacial retreats, may lead to even more insights.


Assuntos
Seleção Genética , Humanos , Alelos , Frequência do Gene
11.
Elife ; 112022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342018

RESUMO

Our current economic and political structures have an increasingly devastating impact on the Earth's climate and ecosystems: we are facing a biospheric emergency, with catastrophic consequences for both humans and the natural world on which we depend. Life scientists - including biologists, medical scientists, psychologists and public health experts - have had a crucial role in documenting the impacts of this emergency, but they have failed to drive governments to take action in order to prevent the situation from getting worse. Here we, as members of the movement Scientist Rebellion, call on life scientists to re-embrace advocacy and activism - which were once hallmarks of academia - in order to highlight the urgency and necessity of systemic change across our societies. We particularly emphasise the need for scientists to engage in nonviolent civil resistance, a form of public engagement which has proven to be highly effective in social struggles throughout history.


Assuntos
Ecossistema , Saúde Pública , Humanos , Mudança Climática
14.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34662402

RESUMO

Although some variation introgressed from Neanderthals has undergone selective sweeps, little is known about its functional significance. We used a Massively Parallel Reporter Assay (MPRA) to assay 5,353 high-frequency introgressed variants for their ability to modulate the gene expression within 170 bp of endogenous sequence. We identified 2,548 variants in active putative cis-regulatory elements (CREs) and 292 expression-modulating variants (emVars). These emVars are predicted to alter the binding motifs of important immune transcription factors, are enriched for associations with neutrophil and white blood cell count, and are associated with the expression of genes that function in innate immune pathways including inflammatory response and antiviral defense. We combined the MPRA data with other data sets to identify strong candidates to be driver variants of positive selection including an emVar that may contribute to protection against severe COVID-19 response. We endogenously deleted two CREs containing expression-modulation variants linked to immune function, rs11624425 and rs80317430, identifying their primary genic targets as ELMSAN1, and PAN2 and STAT2, respectively, three genes differentially expressed during influenza infection. Overall, we present the first database of experimentally identified expression-modulating Neanderthal-introgressed alleles contributing to potential immune response in modern humans.


Assuntos
Variação Genética , Genoma Humano , Imunidade Inata/genética , Homem de Neandertal , Animais , Expressão Gênica , Humanos , Inflamação , Homem de Neandertal/genética
15.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34626111

RESUMO

One of the most powerful and commonly used approaches for detecting local adaptation in the genome is the identification of extreme allele frequency differences between populations. In this article, we present a new maximum likelihood method for finding regions under positive selection. It is based on a Gaussian approximation to allele frequency changes and it incorporates admixture between populations. The method can analyze multiple populations simultaneously and retains power to detect selection signatures specific to ancestry components that are not representative of any extant populations. Using simulated data, we compare our method to related approaches, and show that it is orders of magnitude faster than the state-of-the-art, while retaining similar or higher power for most simulation scenarios. We also apply it to human genomic data and identify loci with extreme genetic differentiation between major geographic groups. Many of the genes identified are previously known selected loci relating to hair pigmentation and morphology, skin, and eye pigmentation. We also identify new candidate regions, including various selected loci in the Native American component of admixed Mexican-Americans. These involve diverse biological functions, such as immunity, fat distribution, food intake, vision, and hair development.


Assuntos
Genética Populacional , Genoma Humano , Simulação por Computador , Frequência do Gene , Genômica/métodos , Humanos , Polimorfismo de Nucleotídeo Único , Seleção Genética
16.
Nature ; 600(7887): 86-92, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34671161

RESUMO

During the last glacial-interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1-8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key findings include: (1) a relatively homogeneous steppe-tundra flora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher effective precipitation, as well as an increase in the proportion of wetland plants, show negative effects on animal diversity; (5) the persistence of the steppe-tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our findings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics.


Assuntos
Biota , DNA Antigo/análise , DNA Ambiental/análise , Metagenômica , Animais , Regiões Árticas , Mudança Climática/história , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Extinção Biológica , Sedimentos Geológicos , Pradaria , Groenlândia , Haplótipos/genética , Herbivoria/genética , História Antiga , Humanos , Lagos , Mamutes , Mitocôndrias/genética , Perissodáctilos , Pergelissolo , Filogenia , Plantas/genética , Dinâmica Populacional , Chuva , Sibéria , Análise Espaço-Temporal , Áreas Alagadas
17.
Front Genet ; 12: 703541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422004

RESUMO

Genetic association data from national biobanks and large-scale association studies have provided new prospects for understanding the genetic evolution of complex traits and diseases in humans. In turn, genomes from ancient human archaeological remains are now easier than ever to obtain, and provide a direct window into changes in frequencies of trait-associated alleles in the past. This has generated a new wave of studies aiming to analyse the genetic component of traits in historic and prehistoric times using ancient DNA, and to determine whether any such traits were subject to natural selection. In humans, however, issues about the portability and robustness of complex trait inference across different populations are particularly concerning when predictions are extended to individuals that died thousands of years ago, and for which little, if any, phenotypic validation is possible. In this review, we discuss the advantages of incorporating ancient genomes into studies of trait-associated variants, the need for models that can better accommodate ancient genomes into quantitative genetic frameworks, and the existing limits to inferences about complex trait evolution, particularly with respect to past populations.

18.
Elife ; 102021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34032215

RESUMO

Studies in a variety of species have shown evidence for positively selected variants introduced into a population via introgression from another, distantly related population-a process known as adaptive introgression. However, there are few explicit frameworks for jointly modelling introgression and positive selection, in order to detect these variants using genomic sequence data. Here, we develop an approach based on convolutional neural networks (CNNs). CNNs do not require the specification of an analytical model of allele frequency dynamics and have outperformed alternative methods for classification and parameter estimation tasks in various areas of population genetics. Thus, they are potentially well suited to the identification of adaptive introgression. Using simulations, we trained CNNs on genotype matrices derived from genomes sampled from the donor population, the recipient population and a related non-introgressed population, in order to distinguish regions of the genome evolving under adaptive introgression from those evolving neutrally or experiencing selective sweeps. Our CNN architecture exhibits 95% accuracy on simulated data, even when the genomes are unphased, and accuracy decreases only moderately in the presence of heterosis. As a proof of concept, we applied our trained CNNs to human genomic datasets-both phased and unphased-to detect candidates for adaptive introgression that shaped our evolutionary history.


Assuntos
Evolução Molecular , Redes Neurais de Computação , Frequência do Gene , Genótipo , Humanos , Mutação
20.
Nature ; 585(7825): 390-396, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939067

RESUMO

The maritime expansion of Scandinavian populations during the Viking Age (about AD 750-1050) was a far-flung transformation in world history1,2. Here we sequenced the genomes of 442 humans from archaeological sites across Europe and Greenland (to a median depth of about 1×) to understand the global influence of this expansion. We find the Viking period involved gene flow into Scandinavia from the south and east. We observe genetic structure within Scandinavia, with diversity hotspots in the south and restricted gene flow within Scandinavia. We find evidence for a major influx of Danish ancestry into England; a Swedish influx into the Baltic; and Norwegian influx into Ireland, Iceland and Greenland. Additionally, we see substantial ancestry from elsewhere in Europe entering Scandinavia during the Viking Age. Our ancient DNA analysis also revealed that a Viking expedition included close family members. By comparing with modern populations, we find that pigmentation-associated loci have undergone strong population differentiation during the past millennium, and trace positively selected loci-including the lactase-persistence allele of LCT and alleles of ANKA that are associated with the immune response-in detail. We conclude that the Viking diaspora was characterized by substantial transregional engagement: distinct populations influenced the genomic makeup of different regions of Europe, and Scandinavia experienced increased contact with the rest of the continent.


Assuntos
Fluxo Gênico/genética , Genética Populacional , Genoma Humano/genética , Genômica , Migração Humana/história , Alelos , Conjuntos de Dados como Assunto , Inglaterra , Evolução Molecular , Groenlândia , História Medieval , Humanos , Imunidade/genética , Irlanda , Lactase/genética , Lactase/metabolismo , Masculino , Países Escandinavos e Nórdicos , Seleção Genética , Análise Espaço-Temporal , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA