RESUMO
Two innovative early/late Ti-Pt-heterobimetallic complexes were synthesized, characterized, and screened in cell-based assays using several human (SW480 and MDA-MB-231) and murine cancer cell lines (CT26 and EMT6) as well as a non-cancerous cell line (HMEC). The combination of the two metals - titanium(IV) and platinum (IV) - in a single molecule led to a synergistic biological activity (higher anti-proliferative properties than a mixture of each of the corresponding monometallic complexes). This study also investigated the benefits of associating a metal-free terpyridine moiety (with intrinsic biological activity) with a water-soluble titanocene fragment. The present work reveals that these combinations results in water-soluble titanocene compounds displaying an anti-proliferative activity down to the submicromolar level. One of these complexes induced an antitumor effect inâ vivo in CT26 tumor bearing BALB/C mice. The terpyridine moiety was also used to track the complex inâ vitro by multiphoton microscopy imaging.
Assuntos
Antineoplásicos , Proliferação de Células , Camundongos Endogâmicos BALB C , Platina , Solubilidade , Titânio , Água , Animais , Humanos , Titânio/química , Titânio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Camundongos , Platina/química , Platina/farmacologia , Água/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Compostos Organometálicos/síntese química , Desenho de Fármacos , Cátions/química , Cátions/farmacologia , Estrutura MolecularRESUMO
The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent.
Assuntos
Imunoconjugados , Água , Trastuzumab , Compostos de Boro , Corantes FluorescentesRESUMO
Detection of biomarkers to diagnose, treat, and predict the efficacy of cancer therapies is a major clinical challenge. Currently, biomarkers such as PD-L1 are commonly detected from biopsies, but this approach does not take into account the spatiotemporal heterogeneity of their expression in tumors. A solution consists in conjugating monoclonal antibodies (mAbs) targeting these biomarkers with multimodal imaging probes. In this study, a bimodal [111In]-DOTA-aza-BODIPY probe emitting in the near-infrared (NIR) was grafted onto mAbs targeting murine or human PD-L1 either in a site-specific or random manner. In vitro, these bimodal mAbs showed a good stability and affinity for PD-L1. In vivo, they targeted specifically PD-L1 and were detected by both fluorescence and SPECT imaging. A significant benefit of site-specific conjugation on glycans was observed compared to random conjugation on lysine. The potential of this bimodal agent was also highlighted, thanks to a proof of concept of fluorescence-guided surgery in a human PD-L1+ tumor model.
Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Animais , Camundongos , Antígeno B7-H1/metabolismo , Anticorpos Monoclonais , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Biomarcadores , Linhagem Celular TumoralRESUMO
(1) Background: Immunosuppression is a key barrier to effective anti-cancer therapies, particularly in triple-negative breast cancer (TNBC), an aggressive and difficult to treat form of breast cancer. We investigated here whether the combination of doxorubicin, a standard chemotherapy in TNBC with glyceryltrinitrate (GTN), a nitric oxide (NO) donor, could overcome chemotherapy resistance and highlight the mechanisms involved in a mouse model of TNBC. (2) Methods: Balb/C-bearing subcutaneous 4T1 (TNBC) tumors were treated with doxorubicin (8 mg/Kg) and GTN (5 mg/kg) and monitored for tumor growth and tumor-infiltrating immune cells. The effect of treatments on MDSCs reprogramming was investigated ex vivo and in vitro. (3) Results: GTN improved the anti-tumor efficacy of doxorubicin in TNBC tumors. This combination increases the intra-tumor recruitment and activation of CD8+ lymphocytes and dampens the immunosuppressive function of PMN-MDSCs PD-L1low. Mechanistically, in PMN-MDSC, the doxorubicin/GTN combination reduced STAT5 phosphorylation, while GTN +/- doxorubicin induced a ROS-dependent cleavage of STAT5 associated with a decrease in FATP2. (4) Conclusion: We have identified a new combination enhancing the immune-mediated anticancer therapy in a TNBC mouse model through the reprograming of PMN-MDSCs towards a less immunosuppressive phenotype. These findings prompt the testing of GTN combined with chemotherapies as an adjuvant in TNBC patients experiencing treatment failure.
RESUMO
Among all approaches in molecular imaging, the combination of near-infrared fluorescence imaging (NIRF) with radioisotopic imaging (PET or SPECT) allows one to benefit from the advantages of each of the imaging techniques, which are very complementary and of comparable sensitivity. To this end, the construction of monomolecular multimodal probes (MOMIP) has made it possible to combine the two imaging modalities within the same molecule, thus limiting the number of bioconjugation sites and yielding more homogeneous conjugates compared with those prepared through sequential conjugation. However, in order to optimize the bioconjugation strategy and, at the same time, the pharmacokinetic and biodistribution properties of the resulting imaging agent, a site-specific approach may be preferred. To further investigate this hypothesis, random and glycan-based site-specific bioconjugation approaches were compared thanks to a SPECT/NIRF bimodal probe based on an aza-BODIPY fluorophore. The overall experiments conducted in vitro and in vivo on HER2-expressing tumors demonstrated a clear superiority of the site-specific approach to improve affinity, specificity, and biodistribution of the bioconjugates.
RESUMO
Cellular inhibitor of apoptosis-1 (cIAP1) is a signaling regulator with oncogenic properties. It is involved in the regulation of signaling pathways controlling inflammation, cell survival, proliferation, differentiation and motility. It is recruited into membrane-receptor-associated signaling complexes thanks to the molecular adaptor TRAF2. However, the cIAP1/TRAF2 complex exists, independently of receptor engagement, in several subcellular compartments. The present work strengthens the importance of TRAF2 in the oncogenic properties of cIAP1. cIAPs-deficient mouse embryonic fibroblasts (MEFs) were transformed using the HRas-V12 oncogene. Re-expression of cIAP1 enhanced tumor growth in a nude mice xenograft model, and promoted lung tumor nodes formation. Deletion or mutation of the TRAF2-binding site completely abolished the oncogenic properties of cIAP1. Further, cIAP1 mediated the clustering of TRAF2, which was sufficient to stimulate tumor growth. Our TRAF2 interactome analysis showed that cIAP1 was critical for TRAF2 to bind to its protein partners. Thus, cIAP1 and TRAF2 would be two essential subunits of a signaling complex promoting a pro-tumoral signal. cIAP1/TRAF2 promoted the activation of the canonical NF-κB and ERK1/2 signaling pathways. NF-κB-dependent production of IL-6 triggered the activation of the JAK/STAT3 axis in an autocrine manner. Inhibition or downregulation of STAT3 specifically compromised the growth of cIAP1-restored MEFs but not that of MEFs expressing a cIAP1-mutant and treating mice with the STAT3 inhibitor niclosamide completely abrogated cIAP1/TRAF2-mediated tumor growth. Altogether, we demonstrate that cIAP1/TRAF2 binding is essential to promote tumor growth via the activation of the JAK/STAT3 signaling pathway.
Assuntos
NF-kappa B , Neoplasias , Humanos , Animais , Camundongos , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , NF-kappa B/metabolismo , Camundongos Nus , Fibroblastos/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismoRESUMO
Immunotherapy has allowed major advances in oncology in the past years, in particular with the development of immune checkpoint inhibitors, but the clinical benefits are still limited, particularly in colorectal cancer (CRC). Our scientific approach is based on the search for innovative immunotherapy with a final goal that aims to induce an effective antitumor immune response in CRC. Here, we focused on a multikinase inhibitor, H89. We carried out in vivo experiments based on syngeneic mouse models of colon cancer in BALB/c mice and chemically colon tumorigenesis. Flow cytometry, RNAseq, RT-qPCR, antibody-specific immune cell depletion, and Western blot were used to identify the immune cell type involved in the preventive and antitumor activity of H89. We demonstrated that H89 delays colon oncogenesis and prevents tumor growth. This latter effect seems to involve NK cells. H89 also inhibits colon tumor growth in a T-cell-dependent manner. Analysis of the immune landscape in the tumor microenvironment showed an increase of CD4+ Th1 cells and CD8+ cytotoxic T cells but a decrease of CD4+ Treg cell infiltration. Mechanistically, we showed that H89 could promote naïve CD4+ T-cell differentiation into Th1, a decrease in Treg differentiation, and an increase in CD8+ T-cell activation and cytotoxicity ex vivo. Furthermore, H89 induced overexpression of genes involved in antitumor immune response, such as IL-15RA, which depletion counteracts the antitumor effect of H89. We also found that H89 regulated Akt/PP2A pathway axis, involved in TCR and IL-15 signaling transduction. Our findings identify the H89 as a potential strategy for immune system activation leading to the prevention and treatment of CRC.
Assuntos
Neoplasias do Colo , Inibidores de Proteínas Quinases , Animais , Neoplasias do Colo/terapia , Inibidores de Checkpoint Imunológico , Imunoterapia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Microambiente TumoralRESUMO
Tumors poorly infiltrated by T cells are more resistant to immunogenic chemotherapies and checkpoint inhibition than highly infiltrated tumors. Using murine models, we found that CCR6+ type 3 innate lymphoid cells (ILC3s) can trigger an increase in the number of T cells infiltrating a tumor. Shortly after administration of cisplatin chemotherapy, production of the chemokine CCL20 and proinflammatory cytokine IL-1ß at the tumor site led to the recruitment and activation of ILC3s. Within the tumor, ILC3 production of the chemokine CXCL10 was responsible for the recruitment of CD4+ and CD8+ T lymphocytes to the tumor. ILC3-dependent infiltration of T cells was essential for antitumor immune responses and increased the efficacy of checkpoint inhibition. Thus, we reveal an essential role of CCL20 and IL-1ß, which promote ILC3-dependent antitumor immunity and enhance tumor sensitivity to immunotherapy.
Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Citocinas/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BLRESUMO
A water-soluble fluorescent aza-BODIPY platform (Wazaby) was prepared and functionalized by a polyazamacrocycle agent and a bioconjugable arm. The resulting fluorescent derivative was characterized and bioconjugated onto a trastuzumab monoclonal antibody as a vector. After bioconjugation, the imaging agent appeared to be stable in serum (>72 h at 37 °C) and specifically labeled HER-2-positive breast tumors slices. The bioconjugate was radiolabeled with [111In] indium and studied in vivo. The developed monomolecular multimodal imaging probe (MOMIP) is water-soluble and chemically and photochemically stable, emits in the near infrared (NIR) region (734 nm in aqueous media), and displays a good quantum yield of fluorescence (around 15%). Single-photon emission-computed tomography and fluorescence imaging have been performed in nude mice bearing HER2-overexpressing HCC1954 human breast cancer xenografts and have evidenced the good tumor targeting of the [111In] In bimodal agent. Finally, the proof of concept of using it as a new tool for fluorescence-guided surgery has been shown.
Assuntos
Compostos de Boro/química , Neoplasias da Mama/diagnóstico por imagem , Desenvolvimento de Medicamentos , Corantes Fluorescentes/química , Imagem Óptica , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Anticorpos Monoclonais/química , Compostos de Boro/síntese química , Relação Dose-Resposta a Droga , Feminino , Corantes Fluorescentes/síntese química , Células Hep G2 , Humanos , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Camundongos Nus , Estrutura Molecular , Solubilidade , Relação Estrutura-Atividade , Água/químicaRESUMO
Triple-negative breast cancer (TNBC) is a highly aggressive disease with invasive and metastasizing properties associated with a poor prognosis. The STAT3 signaling pathway has shown a pivotal role in cancer cell migration, invasion, metastasis and drug resistance of TNBC cells. IL-6 is a main upstream activator of the JAK2/STAT3 pathway. In the present study we examined the impact of the NO-donor glyceryl trinitrate (GTN) on the activation of the JAK2/STAT3 signaling pathway and subsequent migration, invasion and metastasis ability of TNBC cells through in vitro and in vivo experiments. We used a subtoxic dose of carboplatin and/or recombinant IL-6 to activate the JAK2/STAT3 signaling pathway and its functional outcomes. We found an inhibitory effect of GTN on the activation of the JAK2/STAT3 signaling, migration and invasion of TNBC cells. We discovered that GTN inhibits the activation of JAK2, the upstream activator of STAT3, and mediates the S-nitrosylation of JAK2. Finally, the effect of GTN (Nitronal) on lung metastasis was investigated to assess its antitumor activity in vivo.
Assuntos
Janus Quinase 2/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitroglicerina/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica/prevenção & controle , Doadores de Óxido Nítrico/uso terapêutico , Nitroglicerina/uso terapêutico , Neoplasias de Mama Triplo Negativas/metabolismoRESUMO
A new family of water-soluble and bioconjugatable aza-BODIPY fluorophores was designed and synthesized using a boron- functionalization strategy. These dissymmetric bis-ammonium aza-BODIPY dyes present optimal properties for a fluorescent probe; i.e., they are highly water-soluble, very stable in physiological medium; they do not aggregate in PBS, possess high quantum yield; and finally, they can be easily bioconjugated to antibodies. Preliminary in vitro and in vivo studies were performed for one of these fluorophores to image PD-L1 (Programmed Death-Ligand 1), highlighting the high potential of these new probes for future in vivo optical imaging studies.
Assuntos
Compostos de Boro/química , Corantes Fluorescentes/química , Imagem Molecular/métodos , Animais , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Solubilidade , Água/químicaRESUMO
A simple trifunctional BODIPY platform was designed. The high potential of this platform was validated via the elaboration of twelve optical theranostics. More specifically, we reported on the synthesis, the characterization, the photophysical properties, and the evaluation of the hydrophilicity properties of the different BODIPY derivatives, as well as a theoretical rationalization of the intriguing chemical behavior of some of them. The antiproliferative evaluation and confocal imaging of the different compounds in three human and murine cancer cell lines were performed and analysed, along with the measurement of gold(i) uptake in one cancer cell line via ICP-MS.
RESUMO
Neutrophils are known to possess both pro- and anti-tumor properties, a feature that could be related to the diversity and plasticity of these cells. Here we explored the hypothesis that under an appropriate environment and stimuli, neutrophils could induce an effective response against tumor cells. In a rat and mouse models, we show that a substantial amount of colon tumor associated-neutrophils (TAN) expressed the cytolytic enzyme granzyme B, which is absent in spleen or blood circulating neutrophils. This TAN population was also found into tumors of patients with colon cancer. Tumor neutrophil infiltration was correlated with an increase of chemokines known to attract neutrophils in both rat models and patients. These cells were involved in a Lipid A analog-mediated colon tumor regression. Mechanistically, treating the rats with the Lipid A analog triggered granzyme B release from neutrophils in tumor cell vicinity, which was correlated to tumor regression. Alteration of granzyme B function in tumor cells decreased the cytotoxic effect of Lipid A in rat and mouse models. Granzyme B expression in neutrophils could be induced by the lipid A analog but also by some of the cytokines that were detected in the tumor microenvironment. These results identify a subpopulation of neutrophils expressing granzyme B that can act as a key player of lipid A-mediated colon cancer regression in rat and mouse models and the molecular mechanisms involved may provide novel approaches for human therapeutic intervention.
RESUMO
Toll-like receptor (TLR) 4 agonists have emerged as a new group of molecules used for cancer therapy. They have been exploited to enhance the immunogenicity of current chemotherapeutic regimens. However, their effects on cancer cells remain elusive. Here, we showed that a TLR4 agonist, namely a synthetic lipid A analog (ALA), OM-174, exhibits antitumor effects in several mammary tumor mouse models. We also showed that immune components are involved in such effects, as attested to by the failure of ALA to induce tumor regression or an increase of animal survival in mice knocked-out for interferon γ (IFNγ) or TLR4. TLR4 and IFNγ receptor (INFR2) expressed by cancer cells are involved in the antitumor efficacy of ALA since this last did not inhibit tumor growth in mice bearing a tumor but lacking TLR4 or IFNγ receptor 2 (IFNR2). Mechanistic investigations revealed that nitric oxide (NO), superoxide and peroxynitrite produced by uncoupling of inducible NO synthase (NOS II) in cancer cells are key mediators of ALA and IFNγ-mediated tumor growth inhibition. We present here a comprehensive picture of tumor cell death induction, in vivo and in vitro, by immunotherapy and for the first time the involvement of the TLR4/IFNγ/NOS II pathway in immunotherapy was investigated.
RESUMO
Bleomycin (BLM) is a potent anticancer drug used to treat different malignancies, mainly lymphomas, germ cell tumors, and melanomas. Unfortunately, BLM has major, dose-dependent, pulmonary toxicity that affects 20% of treated individuals. The most severe form of BLM-induced pulmonary toxicity is lung fibrosis. Deglyco-BLM is a molecule derived from BLM in which the sugar residue d-mannosyl-l-glucose disaccharide has been deleted. The objective of this study was to assess the anticancer activity and lung toxicity of deglyco-BLM. We compared the antitumor activity and pulmonary toxicity of intraperitoneally administrated deglyco-BLM and BLM in three rodent models. Pulmonary toxicity was examined in depth after intratracheal administration of both chemotherapeutic agents. The effect of both drugs was further studied in epithelial alveolar cells in vitro. We demonstrated in rodent cancer models, including a human Hodgkin's lymphoma xenograft and a syngeneic melanoma model, that intraperitoneal deglyco-BLM is as effective as BLM in inducing tumor regression. Whereas the antitumor effect of BLM was accompanied by a loss of body weight and the development of pulmonary toxicity, deglyco-BLM did not affect body weight and did not engender lung injury. Both molecules induced lung epithelial cell apoptosis after intratracheal administration, but deglyco-BLM lost the ability to induce caspase-1 activation and the production of ROS (reactive oxygen species), transforming growth factor-ß1, and other profibrotic and inflammatory cytokines in the lungs of mice and in vitro. Deglyco-BLM should be considered for clinical testing as a less toxic alternative to BLM in cancer therapy.
Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Bleomicina/análogos & derivados , Pulmão/patologia , Animais , Apoptose/efeitos dos fármacos , Bleomicina/farmacologia , Bleomicina/toxicidade , Caspase 1/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Ativação Enzimática , Humanos , Inflamação/complicações , Inflamação/patologia , Pulmão/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/complicações , Fibrose Pulmonar/patologia , Espécies Reativas de Oxigênio/metabolismoRESUMO
High doses of the organic nitrate glyceryl trinitrate (GTN), a nitric oxide (NO) donor, are known to trigger apoptosis in human cancer cells. Here, we show that such a cytotoxic effect can be obtained with subtoxic concentrations of GTN when combined with H89, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide.2HCl. This synergistic effect requires the generation of reactive oxygen species (ROS) from H89 and NO from GTN treatment that causes cGMP production and PKG activation. Furthermore, the GTN/H89 synergy was attenuated by inhibition of P2-purinergic receptors with suramin and competition with ATP/UDP. By down-regulating genes with antisense oligonucleotides, P2-purinergic receptors P2X3, P2Y1, and P2Y6 were found to have a role in creating this cytotoxic effect. Thus, H89 likely acts as an ATP mimetic synergizing with GTN to trigger apoptosis in aggressive cancer cells.
Assuntos
Neoplasias do Colo/patologia , Isoquinolinas/química , Neoplasias/metabolismo , Nitroglicerina/química , Receptores Purinérgicos/metabolismo , Sulfonamidas/química , Trifosfato de Adenosina/química , Animais , Apoptose , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Sinergismo Farmacológico , Perfilação da Expressão Gênica , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Óxido Nítrico/química , Oligonucleotídeos Antissenso/química , Inibidores de Proteínas Quinases/química , Espécies Reativas de Oxigênio/química , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Transdução de Sinais , TransfecçãoRESUMO
Four new red BODIPY-gold(I) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.
Assuntos
Ouro/química , Imagem Óptica/métodos , Compostos Organometálicos/uso terapêutico , Transporte Biológico , Bombesina/metabolismo , Compostos de Boro/química , Linhagem Celular Tumoral , Humanos , Microscopia de Fluorescência , Compostos Organometálicos/química , Compostos Organometálicos/metabolismoRESUMO
Management of advanced colorectal cancer is challenging due to the lack of efficient therapy. The lipid A, OM-174 exhibited antitumor activity in colorectal cancer. We explored the anticancer efficacy of this compound in rats bearing large colorectal tumors in combination with the platinum derivative drugs oxaliplatin and cisplatin. While each drug used alone exhibited partial antitumor activity, sequential treatment with oxaliplatin or cisplatin for one week followed by lipid A injections induced a great regression of colorectal tumors, with more than 95% of rats cured from their tumors. This potent antitumor efficacy of the combined treatments was correlated to the sequential induction of cellular senescence by oxaliplatin, and of apoptosis, mainly triggered by the lipid A. Moreover, a recruitment of tumor-associated neutrophils with N1 phenotype as attested by the expression of inducible nitric oxide synthase was observed with combination of oxaliplatin and lipid A. Neutrophil recruitment within tumor microenvironment was due to oxaliplatin and lipid A-dependent release of neutrophil specific chemoattractants such as cxcl1 and 2. However the N1 phenotype is only dependent of lipid A treatment. These results suggest that the combination of chemotherapy with an immunotherapy is a promising approach to treat patients with advanced colorectal cancer.
Assuntos
Antineoplásicos/química , Neoplasias Colorretais/tratamento farmacológico , Imunoterapia/métodos , Lipídeo A/uso terapêutico , Lipopolissacarídeos/química , Neutrófilos/imunologia , Compostos Organoplatínicos/química , Animais , Apoptose , Senescência Celular , Quimiocinas/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Lipídeo A/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neutrófilos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Oxaliplatina , Fenótipo , Ratos , Microambiente TumoralRESUMO
Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.
Assuntos
Compostos de Bifenilo/farmacologia , Regulação Neoplásica da Expressão Gênica , Membranas Mitocondriais/efeitos dos fármacos , Nitrofenóis/farmacologia , Fragmentos de Peptídeos/química , Proteínas Proto-Oncogênicas/química , Sulfonamidas/farmacologia , Animais , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/farmacologia , Feminino , Humanos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Permeabilidade , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismoRESUMO
Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic disorder that occurs in elderly patients. One of the main diagnostic criteria is the accumulation of heterogeneous monocytes in the peripheral blood. We further explored this cellular heterogeneity and observed that part of the leukemic clone in the peripheral blood was made of immature dysplastic granulocytes with a CD14(-)/CD24(+) phenotype. The proteome profile of these cells is dramatically distinct from that of CD14(+)/CD24(-) monocytes from CMML patients or healthy donors. More specifically, CD14(-)/CD24(+) CMML cells synthesize and secrete large amounts of alpha-defensin 1-3 (HNP1-3). Recombinant HNPs inhibit macrophage colony-stimulating factor (M-CSF)-driven differentiation of human peripheral blood monocytes into macrophages. Using transwell, antibody-mediated depletion, suramin inhibition of purinergic receptors, and competitive experiments with uridine diphosphate (UDP)/uridine triphosphate (UTP), we demonstrate that HNP1-3 secreted by CD14(-)/CD24(+) cells inhibit M-CSF-induced differentiation of CD14(+)/CD24(-) cells at least in part through P2Y6, a receptor involved in macrophage differentiation. Altogether, these observations suggest that a population of immature dysplastic granulocytes contributes to the CMML phenotype through production of alpha-defensins HNP1-3 that suppress the differentiation capabilities of monocytes.