Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559248

RESUMO

Spn1 is a multifunctional histone chaperone essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing (MNase-SSP) to characterize chromatin structure in yeast expressing wild-type or mutants of Spn1. We mapped nucleosome and subnucleosomal protections genome-wide, and surprisingly, we observed a genome-wide loss of subnucleosomal protection over nucleosome-depleted regions (NDRs) in the Spn1-K192N-containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture in promoter regions. Additionally, alterations in nucleosome and hexasome positioning were observed in markedly different mutant Spn1 strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames, particularly at higher expressed and longer genes. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.

2.
J Mol Biol ; 434(13): 167630, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595162

RESUMO

Histone chaperones facilitate the assembly and disassembly of nucleosomes and regulate DNA accessibility for critical cellular processes. Spn1 is an essential, highly conserved histone chaperone that functions in transcription initiation and elongation in a chromatin context. Here we demonstrate that Spn1 binds H3-H4 with low nanomolar affinity, residues 85-99 within the acidic N-terminal region of Spn1 are required for H3-H4 binding, and Spn1 binding to H3-H4 dimers does not impede (H3-H4)2 tetramer formation. Previous work has shown the central region of Spn1 (residues 141-305) is important for interaction with Spt6, another conserved and essential histone chaperone. We show that the C-terminal region of Spn1 also contributes to Spt6 binding and is critical for Spn1 binding to nucleosomes. We also show Spt6 preferentially binds H3-H4 tetramers and Spt6 competes with nucleosomes for Spn1 binding. Combined with previous results, this indicates the Spn1-Spt6 complex does not bind nucleosomes. In contrast to nucleosome binding, we found that the Spn1-Spt6 complex can bind H3-H4 dimers and tetramers and H2A-H2B to form ternary complexes. These important results provide new information about the functions of Spn1, Spt6, and the Spn1-Spt6 complex, two essential and highly conserved histone chaperones.


Assuntos
Chaperonas de Histonas/metabolismo , Histonas , Nucleossomos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Cromatina , DNA/metabolismo , Chaperonas de Histonas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química
3.
Genetics ; 210(4): 1227-1237, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301740

RESUMO

Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.


Assuntos
Envelhecimento/genética , Instabilidade Genômica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética
4.
Nucleic Acids Res ; 46(5): 2321-2334, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29300974

RESUMO

The process of transcriptional elongation by RNA polymerase II (RNAPII) in a chromatin context involves a large number of crucial factors. Spn1 is a highly conserved protein encoded by an essential gene and is known to interact with RNAPII and the histone chaperone Spt6. Spn1 negatively regulates the ability of Spt6 to interact with nucleosomes, but the chromatin binding properties of Spn1 are largely unknown. Here, we demonstrate that full length Spn1 (amino acids 1-410) binds DNA, histones H3-H4, mononucleosomes and nucleosomal arrays, and has weak nucleosome assembly activity. The core domain of Spn1 (amino acids 141-305), which is necessary and sufficient in Saccharomyces cerevisiae for growth under ideal growth conditions, is unable to optimally interact with histones, nucleosomes and/or DNA and fails to assemble nucleosomes in vitro. Although competent for binding with Spt6 and RNAPII, the core domain derivative is not stably recruited to the CYC1 promoter, indicating chromatin interactions are an important aspect of normal Spn1 functions in vivo. Moreover, strong synthetic genetic interactions are observed with Spn1 mutants and deletions of histone chaperone genes. Taken together, these results indicate that Spn1 is a histone binding factor with histone chaperone functions.


Assuntos
Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos c/genética , DNA/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/metabolismo
5.
Elife ; 62017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28315523

RESUMO

Nucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex. Here we investigate the CAF-1•H3-H4 binding mode and the mechanism of nucleosome assembly. We show that yeast CAF-1 binding to a H3-H4 dimer activates the Cac1 winged helix domain interaction with DNA. This drives the formation of a transient CAF-1•histone•DNA intermediate containing two CAF-1 complexes, each associated with one H3-H4 dimer. Here, the (H3-H4)2 tetramer is formed and deposited onto DNA. Our work elucidates the molecular mechanism for histone deposition by CAF-1, a reaction that has remained elusive for other histone chaperones, and it advances our understanding of how nucleosomes and their epigenetic information are maintained through DNA replication.


Assuntos
Cromossomos Fúngicos/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Ligação Proteica
6.
Mol Cell Biol ; 36(8): 1287-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26884462

RESUMO

Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo.


Assuntos
Galactoquinase/genética , Loci Gênicos , Histonas/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Cromatina/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Família Multigênica , Proteína 1 de Modelagem do Nucleossomo/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica
7.
Genetics ; 190(2): 305-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22135354

RESUMO

Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.


Assuntos
Bioquímica/educação , Genética/educação , Criança , Currículo , Humanos
8.
Genet Res Int ; 2011: 206290, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22567346

RESUMO

The initial discovery of the occupancy of RNA polymerase II at certain genes prior to their transcriptional activation occurred a quarter century ago in Drosophila. The preloading of these poised complexes in this inactive state is now apparent in many different organisms across the evolutionary spectrum and occurs at a broad and diverse set of genes. In this paper, we discuss the genetic and biochemical efforts in S. cerevisiae to describe the conversion of these poised transcription complexes to the active state for productive elongation. The accumulated evidence demonstrates that a multitude of coactivators and chromatin remodeling complexes are essential for this transition.

9.
J Mol Biol ; 404(1): 1-15, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20875428

RESUMO

Spn1/Iws1 plays essential roles in the regulation of gene expression by RNA polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP (TATA-binding protein), TFIIS (transcription factor IIS), and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here, we report the high-resolution (1.85 Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is composed of eight α-helices in a right-handed superhelical arrangement and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity.


Assuntos
Regulação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 279(30): 31259-67, 2004 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-15161919

RESUMO

The architecture of eukaryotic rRNA transcription complexes was analyzed, revealing facts significant to the RNA polymerase (pol) I initiation process. Functional initiation and elongation complexes were mapped by site-specific photocross-linking to template DNA. Polymerase I is recruited to the promoter via protein-protein interactions with DNA-bound transcription initiation factor-IB. The latter's TATA-binding protein (TBP) and TAFs photocross-link to the promoter from -78 to +10 relative to the tis (+1). Although TBP does not bind DNA using its TATA-binding saddle, it does photocross-link to a 22-bp sequence that does not resemble a TATA box. Only TAF(I)96 (the mammalian TAF(I) 68, yeast Rrn7p homolog) overlaps significantly with the DNA interaction cleft of pol I based on modeling to the pol II crystal structure. None of the pol I-specific subunits that are localized on the lips of the cleft (A49 and A34.5) or the pol I-specific stalk (A43 and A14) cross-link to DNA. Pol I does not extend significantly upstream of the promoter-proximal border of the factor complex (-11 to -14), and similarly in the promoter proximal elongation complex, the enzyme does not contact DNA upstream of its normal exit from the cleft.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/metabolismo , Acanthamoeba/enzimologia , Acanthamoeba/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Reagentes de Ligações Cruzadas , DNA de Protozoário/genética , Modelos Moleculares , Dados de Sequência Molecular , Fotoquímica , Regiões Promotoras Genéticas , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Polimerase I/genética , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA