Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Br J Haematol ; 202(1): 173-183, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36960712

RESUMO

The pathophysiologic mechanism of sickle cell disease (SCD) involves polymerization of deoxygenated haemoglobin S (HbS), leading to red blood cell (RBC) sickling, decreased RBC deformability, microvascular obstruction, haemolysis, anaemia and downstream clinical complications. Pharmacological increase in the concentration of oxygenated HbS in RBCs has been shown to be a novel approach to inhibit HbS polymerization and reduce RBC sickling and haemolysis. We report that GBT021601, a small molecule that increases HbS-oxygen affinity, inhibits HbS polymerization and prevents RBC sickling in blood from patients with SCD. Moreover, in a murine model of SCD (SS mice), GBT021601 reduces RBC sickling, improves RBC deformability, prolongs RBC half-life and restores haemoglobin levels to the normal range, while improving oxygen delivery and increasing tolerance to severe hypoxia. Notably, oral dosing of GBT021601 in animals results in higher levels of Hb occupancy than voxelotor and suggests the feasibility of once-daily dosing in humans. In summary, GBT021601 improves RBC health and normalizes haemoglobin in SS mice, suggesting that it may be useful for the treatment of SCD. These data are being used as a foundation for clinical research and development of GBT021601.


Assuntos
Anemia Falciforme , Hemólise , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Oxigênio , Anemia Falciforme/tratamento farmacológico , Eritrócitos , Hemoglobinas , Hemoglobina Falciforme
2.
Front Microbiol ; 12: 757856, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956122

RESUMO

Pseudomonas species are ubiquitous in nature and include numerous medically, agriculturally and technologically beneficial strains of which the interspecific interactions are of great interest for biotechnologies. Specifically, co-cultures containing Pseudomonas stutzeri have been used for bioremediation, biocontrol, aquaculture management and wastewater denitrification. Furthermore, the use of P. stutzeri biofilms, in combination with consortia-based approaches, may offer advantages for these processes. Understanding the interspecific interaction within biofilm co-cultures or consortia provides a means for improvement of current technologies. However, the investigation of biofilm-based consortia has been limited. We present an adaptable and scalable method for the analysis of macroscopic interactions (colony morphology, inhibition, and invasion) between colony-forming bacterial strains using an automated printing method followed by analysis of the genes and metabolites involved in the interactions. Using Biofilm Interaction Mapping and Analysis (BIMA), these interactions were investigated between P. stutzeri strain RCH2, a denitrifier isolated from chromium (VI) contaminated soil, and 13 other species of pseudomonas isolated from non-contaminated soil. One interaction partner, Pseudomonas fluorescens N1B4 was selected for mutant fitness profiling of a DNA-barcoded mutant library; with this approach four genes of importance were identified and the effects on interactions were evaluated with deletion mutants and mass spectrometry based metabolomics.

3.
ACS Med Chem Lett ; 8(2): 185-190, 2017 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-28197309

RESUMO

A series of macrocyclic analogues were designed and synthesized based on the cocrystal structure of small molecule plasma kallikrein (pKal) inhibitor, 2, with the pKal protease domain. This led to the discovery of a potent macrocyclic pKal inhibitor 29, with an IC50 of 2 nM for one olefinic isomer and 42.3 nM for the other olefinic isomer.

4.
PLoS One ; 9(10): e110054, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25333274

RESUMO

Homocysteinylation of lysine residues by homocysteine thiolactone (HCTL), a reactive homocysteine metabolite, results in protein aggregation and malfunction, and is a well-known risk factor for cardiovascular, autoimmune and neurological diseases. Human plasma paraoxonase-1 (PON1) and bleomycin hydrolase (Blmh) have been reported as the physiological HCTL detoxifying enzymes. However, the catalytic efficiency of HCTL hydrolysis by Blmh is low and not saturated at 20 mM HCTL. The catalytic efficiency of PON1 for HCTL hydrolysis is 100-fold lower than that of Blmh. A homocysteine thiolactonase (HCTLase) was purified from human liver and identified by mass spectrometry (MS) as the previously described human biphenyl hydrolase-like protein (BPHL). To further characterize this newly described HCTLase activity, BPHL was expressed in Escherichia coli and purified. The sequence of the recombinant BPHL (rBPHL) and hydrolytic products of the substrates HCTL and valacyclovir were verified by MS. We found that the catalytic efficiency (kcat/Km) of rBPHL for HCTL hydrolysis was 7.7 × 10(4) M(-1)s(-1), orders of magnitude higher than that of PON1 or Blmh, indicating a more significant physiological role for BPHL in detoxifying HCTL.


Assuntos
Arildialquilfosfatase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Fígado/enzimologia , Arildialquilfosfatase/genética , Hidrolases de Éster Carboxílico/genética , Humanos
5.
Drug Metab Dispos ; 42(11): 1955-63, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25187484

RESUMO

Tienilic acid (TA) is selectively oxidized at the C-5 position of the thiophene ring by the human liver enzyme cytochrome P450 2C9 (CYP2C9). This oxidation is mediated by the proximal positioning of the thiophene over the heme iron, which is proposed to be coordinated by an interaction of the TA carboxylic acid to a cationic binding pocket in the enzyme active site. In this study, we investigated how chemical modification of TA influences the bioactivation by CYP2C9. For this investigation, nine analogs of TA were chosen with substitutions on either side of the molecule. We tested three parameters, including CYP2C9 inhibition, metabolic profiling, and in silico docking. Of the 10 compounds tested, only two (TA and a noncarboxyl analog) resulted in competitive and time-dependent inhibition of CYP2C9. Metabolic profiling revealed a trend in which substitution of the carboxylate with nonionizable functional groups resulted in metabolic switching from oxidation of the aromatic ring to dealkylation reactions at the opposite side of the structure. The in silico modeling predicted an opposite binding orientation to that of TA for many analogs, including the 3-thenoyl regio-isomer analog, which contradicts previous models. Together these data show that disrupting interactions with the cationic binding pocket of CYP2C9 will impact the sites of metabolism and inhibition of the enzyme.


Assuntos
Citocromo P-450 CYP2C9/metabolismo , Ticrinafeno/metabolismo , Cátions , Simulação por Computador , Diuréticos/metabolismo , Diuréticos/farmacocinética , Humanos , Técnicas In Vitro , Especificidade por Substrato , Ticrinafeno/farmacocinética , Uricosúricos/metabolismo , Uricosúricos/farmacocinética
6.
Redox Biol ; 2: 377-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563856

RESUMO

The mechanism by which acetaminophen (APAP) causes liver damage evokes many aspects drug metabolism, oxidative chemistry, and genetic-predisposition. In this study, we leverage the relative resistance of female C57BL/6 mice to APAP-induced liver damage (AILD) compared to male C57BL/6 mice in order to identify the cause(s) of sensitivity. Furthermore, we use mice that are either heterozygous (HZ) or null (KO) for glutamate cysteine ligase modifier subunit (Gclm), in order to titrate the toxicity relative to wild-type (WT) mice. Gclm is important for efficient de novo synthesis of glutathione (GSH). APAP (300 mg/kg, ip) or saline was administered and mice were collected at 0, 0.5, 1, 2, 6, 12, and 24 h. Male mice showed marked elevation in serum alanine aminotransferase by 6 h. In contrast, female WT and HZ mice showed minimal toxicity at all time points. Female KO mice, however, showed AILD comparable to male mice. Genotype-matched male and female mice showed comparable APAP-protein adducts, with Gclm KO mice sustaining significantly greater adducts. ATP was depleted in mice showing toxicity, suggesting impaired mitochondria function. Indeed, peroxiredoxin-6, a GSH-dependent peroxiredoxin, was preferentially adducted by APAP in mitochondria of male mice but rarely adducted in female mice. These results support parallel mechanisms of toxicity where APAP adduction of peroxiredoxin-6 and sustained GSH depletion results in the collapse of mitochondria function and hepatocyte death. We conclude that adduction of peroxiredoxin-6 sensitizes male C57BL/6 mice to toxicity by acetaminophen.


Assuntos
Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Glutamato-Cisteína Ligase/genética , Peroxirredoxina VI/metabolismo , Acetaminofen/administração & dosagem , Alanina Transaminase/sangue , Animais , Resistência a Medicamentos , Feminino , Técnicas de Inativação de Genes , Glutationa/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fatores Sexuais
7.
Chem Res Toxicol ; 25(11): 2412-22, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23013248

RESUMO

An NMR-based metabonomic approach was applied to study the systems level metabolic effects of two closely related thiophene compounds, tienilic acid (TA) and tienilic acid isomer (TAI). The metabonomic data were anchored with traditional clinical chemistry and histopathologic analyses. TA was removed from the market as a result of suspected immune-mediated hepatotoxicity, whereas TAI is an intrinsic hepatotoxin. Equimolar doses of TA and TAI were administered to Sprague-Dawley rats, and sampling was conducted at 2, 6, and 24 h post-treatment. Histopathologic analyses revealed development of a significant hepatic lesion 24 h post-TAI treatment with a parallel increase in plasma alanine aminotransferase (ALT) activity. In contrast, TA was not associated with the development of a hepatic lesion or an increase in plasma ALT activity. High-resolution NMR spectral metabolic profiles were generated for liver extracts, plasma, and urine at multiple time points. Multivariate statistical tools were applied to model the metabolic profiles and identify discriminatory metabolites that reflected both the adaptation to TA administration and the onset and progression of TAI-induced hepatotoxicity. TAI was shown to induce marked metabolic effects on the metabolome at all time points, with dramatic metabolic perturbations at 24 h post-treatment correlating with the histopathologic and clinical chemistry evidence of a hepatic lesion. The TAI-induced metabolic perturbations provided evidence for the generation of electrophilic reactive metabolites and a significant impairment of bioenergetic metabolic pathways. TA induced early metabolic perturbations that were largely resolved by 24 h post-treatment, suggesting the reestablishment of metabolic homeostasis and the ability to adapt to the intervention, with hepatic hypotaurine potentially representing a means of assessment of hepatic adaptation. This comparative metabonomic approach enabled the discrimination of metabolic perturbations that were common to both treatments and were interpreted as nontoxic thiophene-induced perturbations. Importantly, this approach enabled the identification of temporal metabolic perturbations that were unique to TAI or TA treatment and hence were of relevance to the development of toxicity or the ability to adapt. This approach is applicable to the future study of pharmacologically and structurally similar compounds and represents a refined means of identification of biomarkers of toxicity.


Assuntos
Ticrinafeno/metabolismo , Animais , Química Clínica , Determinação de Ponto Final , Fígado/química , Fígado/metabolismo , Fígado/patologia , Espectroscopia de Ressonância Magnética , Masculino , Estrutura Molecular , Fenótipo , Ratos , Ratos Sprague-Dawley , Estereoisomerismo , Ticrinafeno/administração & dosagem , Ticrinafeno/química , Testes de Toxicidade
8.
Chem Res Toxicol ; 25(4): 895-903, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-22329513

RESUMO

The uricosuric diuretic agent tienilic acid (TA) is a thiophene-containing compound that is metabolized by P450 2C9 to 5-OH-TA. A reactive metabolite of TA also forms a covalent adduct to P450 2C9 that inactivates the enzyme and initiates immune-mediated hepatic injury in humans, purportedly through a thiophene-S-oxide intermediate. The 3-thenoyl regioisomer of TA, tienilic acid isomer (TAI), is chemically very similar and is reported to be oxidized by P450 2C9 to a thiophene-S-oxide, yet it is not a mechanism-based inactivator (MBI) of P450 2C9 and is reported to be an intrinsic hepatotoxin in rats. The goal of the work presented in this article was to identify the reactive metabolites of TA and TAI by the characterization of products derived from P450 2C9-mediated oxidation. In addition, in silico approaches were used to better understand both the mechanisms of oxidation of TA and TAI and/or the structural rearrangements of oxidized thiophene compounds. Incubation of TA with P450 2C9 and NADPH yielded the well-characterized 5-OH-TA metabolite as the major product. However, contrary to previous reports, it was found that TAI was oxidized to two different types of reactive intermediates that ultimately lead to two types of products, a pair of hydroxythiophene/thiolactone tautomers and an S-oxide dimer. Both TA and TAI incorporated ¹8O from ¹8O2 into their respective hydroxythiophene/thiolactone metabolites indicating that these products are derived from an arene oxide pathway. Intrinsic reaction coordinate calculations of the rearrangement reactions of the model compound 2-acetylthiophene-S-oxide showed that a 1,5-oxygen migration mechanism is energetically unfavorable and does not yield the 5-OH product but instead yields a six-membered oxathiine ring. Therefore, arene oxide formation and subsequent NIH-shift rearrangement remains the favored mechanism for formation of 5-OH-TA. This also implicates the arene oxide as the initiating factor in TA induced liver injury via covalent modification of P450 2C9. Finally, in silico modeling of P450 2C9 active site ligand interactions with TA using the catalytically active iron-oxo species revealed significant differences in the orientations of TA and TAI in the active site, which correlated well with experimental results showing that TA was oxidized only to a ring carbon hydroxylated product, whereas TAI formed both ring carbon hydroxylated products and an S-oxide.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Diuréticos/metabolismo , Ticrinafeno/metabolismo , Animais , Citocromo P-450 CYP2C9 , Diuréticos/química , Humanos , NADP/metabolismo , Oxirredução , Ratos , Estereoisomerismo , Ticrinafeno/química
9.
Chem Res Toxicol ; 21(12): 2393-406, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19548358

RESUMO

Flutamide (FLU), a nonsteroidal antiandrogen drug widely used in the treatment of prostate cancer, has been associated with idiosyncratic hepatotoxicity in patients. It is proposed that bioactivation of FLU and subsequent binding of reactive metabolite(s) to cellular proteins play a causative role. A toxicogenomic study comparing FLU and its nitro to cyano analogue (CYA) showed that the nitroaromatic group of FLU enhanced cytotoxicity to hepatocytes, indicating that reduction of the nitroaromatic group may represent a potential route of FLU-induced hepatotoxicity [Coe et al. (2007) Chem. Res. Toxicol. 20, 1277-1290]. In the current study, we compared in vitro bioactivation of FLU and CYA in human liver microsomes and cryopreserved human hepatocytes. A nitroreduction metabolite FLU-6 was formed in liver microsomal incubations of FLU under atmospheric oxygen levels and, to a greater extent, under anaerobic conditions. Seven glutathione (GSH) adducts of FLU, FLU-G1-7, were tentatively identified in human liver microsomal incubations using liquid chromatography-tandem mass spectrometry (LC/ MS/MS), while CYA formed only four corresponding GSH adducts, CYA-G1-4, under the same conditions. Of particular interest was the formation of FLU-G5-7 from FLU, where the nitroaromatic group of FLU was reduced to an amino group. A tentative pathway is that upon nitroreduction, the para-diamines undergo cytochrome P450 (P450)-catalyzed two-electron oxidations to form corresponding para-diimine intermediates that react with GSH to form GSH adducts FLU-G5-7, respectively. The identities of FLU-G5-7 were further confirmed by LC/MS/MS analyses of microsomal incubations of a synthesized standard FLU-6. In an attempt to identify enzymes involved in the nitroreduction of FLU, NADPH:cytochrome P450 reductase (CPR) was shown to reduce FLU to FLU-6 under both aerobic and anaerobic conditions. Furthermore, the formation of FLU-G5-7 was completely blocked by the addition of a reversible CPR inhibitor, alpha-lipoic acid, to the incubations of FLU under aerobic conditions. In summary, these results clearly demonstrate that nitroreduction of FLU by CPR contributes to bioactivation and potentially to hepatotoxicity of FLU.


Assuntos
Antagonistas de Androgênios/metabolismo , Flutamida/análogos & derivados , Flutamida/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Antagonistas de Androgênios/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Criopreservação , Flutamida/farmacologia , Glutationa/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Oxirredução , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
10.
Chem Res Toxicol ; 20(9): 1277-90, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17702527

RESUMO

Flutamide (FLU) is an antiandrogen primarily used in the treatment of metastatic prostate cancer. It is an idiosyncratic hepatotoxicant that sometimes results in severe liver toxicity. FLU possesses a nitroaromatic group, which may be a contributor to its mechanism of toxicity. A nitro to cyano analogue of FLU (CYA) was synthesized and used to test this hypothesis in the TGFalpha-transfected mouse hepatocyte cell line (TAMH). MTT cell viability assays and confocal microscopy showed that hepatocytes are more sensitive to cytotoxicity caused by FLU than CYA (LD 50 75 vs 150 microM, respectively). Despite the structural modification, the antiandrogen activity of CYA is comparable to that of FLU. Comparisons of transcriptomic changes caused by FLU with those caused by a panel of known cytotoxicants [acetaminophen, tetrafluoroethylcysteine, diquat, and rotenone (ROT)] indicated that FLU results in a temporal gene expression pattern similar to ROT, a known inhibitor of complex I of the electron transport chain. A subsequent microarray analysis comparing FLU to CYA and ROT revealed many similarities among these three compounds; however, FLU and ROT result in more substantial changes than CYA in the expression of genes associated with oxidative phosphorylation, fatty acid beta-oxidation, antioxidant defense, and cell death pathways. Electron microscopy confirmed that FLU leads to mitochondrial toxicity that has some similarities to the mitochondrial effects of ROT, but the morphologic changes caused by FLU were greater in scope with both intra- and intercellular manifestations. Biochemical studies confirmed that both ROT and FLU deplete cellular ATP levels and inhibit complex I of the electron transport chain to a greater extent than CYA. Thus, as compared to CYA, the nitroaromatic group of FLU enhances cytotoxicity to hepatocytes, likely through mechanisms involving mitochondrial dysfunction and ATP depletion that include complex I inhibition.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , Flutamida/química , Flutamida/farmacologia , Hepatócitos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Nitrilas/química , Nitrocompostos/química , Neoplasias da Próstata/tratamento farmacológico , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Antagonistas de Androgênios/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica , Hepatócitos/ultraestrutura , Humanos , Dose Letal Mediana , Masculino , Camundongos , Análise em Microsséries , Estrutura Molecular , Nitrilas/farmacologia , Nitrocompostos/farmacologia
11.
Tree Physiol ; 23(13): 915-21, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14532015

RESUMO

Fine root distribution and turnover were investigated in ca. 40-year-old pure Norway spruce (Picea abies Karst.) stands in Germany, growing on four sites that differed in soil acidity (Ebergötzen < Barbis < Fichtelgebirge = Harz). The density of fine root biomass and necromass in different soil horizons differed among the sites. At one of the most acidic sites (Harz), fine root density in the humus layer was more than twice that at the least acidic site (Ebergötzen). At the two most acidic sites, Fichtelgebirge and Harz, the ratio of biomass to necromass was significantly lower than at Ebergötzen and Barbis, particularly in the subsoil layer. In each stand, clear vertical gradients in fine root length density and root tip density were observed. Most of the roots and the root tips were in the humus layer and in the first mineral soil horizon (0-10 cm). There was a significantly different decrease in specific root length (cm gDM (-1)) and specific root tip density (root tips gDM (-1)) in the more acidified stands Fichtelgebirge and Harz compared with Ebergötzen and Barbis. Fine root production estimated by ingrowth cores and a net method was approximately twice as high in the more acidic stands Fichtelgebirge and Harz compared with Ebergötzen and Barbis. Rates of living fine root biomass turnover were higher at the Fichtelgebirge and Harz sites than at the Ebergötzen site. Rates of necromass turnover were similar at all sites. The results suggest that the accumulation of necromass was not due to a slower disappearance at the more acid sites, but to earlier root death. Roots contributed 46% to root + needle litter and 32% to root + total aboveground litter at the Harz site in 1997.


Assuntos
Picea/fisiologia , Raízes de Plantas/fisiologia , Árvores/fisiologia , Concentração de Íons de Hidrogênio , Meristema/fisiologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA