Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
PLoS One ; 18(2): e0281236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36745648

RESUMO

Automated screening systems in conjunction with machine learning-based methods are becoming an essential part of the healthcare systems for assisting in disease diagnosis. Moreover, manually annotating data and hand-crafting features for training purposes are impractical and time-consuming. We propose a segmentation and classification-based approach for assembling an automated screening system for the analysis of calcium imaging. The method was developed and verified using the effects of disease IgGs (from Amyotrophic Lateral Sclerosis patients) on calcium (Ca2+) homeostasis. From 33 imaging videos we analyzed, 21 belonged to the disease and 12 to the control experimental groups. The method consists of three main steps: projection, segmentation, and classification. The entire Ca2+ time-lapse image recordings (videos) were projected into a single image using different projection methods. Segmentation was performed by using a multi-level thresholding (MLT) step and the Regions of Interest (ROIs) that encompassed cell somas were detected. A mean value of the pixels within these boundaries was collected at each time point to obtain the Ca2+ traces (time-series). Finally, a new matrix called feature image was generated from those traces and used for assessing the classification accuracy of various classifiers (control vs. disease). The mean value of the segmentation F-score for all the data was above 0.80 throughout the tested threshold levels for all projection methods, namely maximum intensity, standard deviation, and standard deviation with linear scaling projection. Although the classification accuracy reached up to 90.14%, interestingly, we observed that achieving better scores in segmentation results did not necessarily correspond to an increase in classification performance. Our method takes the advantage of the multi-level thresholding and of a classification procedure based on the feature images, thus it does not have to rely on hand-crafted training parameters of each event. It thus provides a semi-autonomous tool for assessing segmentation parameters which allows for the best classification accuracy.


Assuntos
Cálcio , Diagnóstico por Imagem , Humanos , Aprendizado de Máquina , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
2.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055039

RESUMO

From the first success in cultivation of cells in vitro, it became clear that developing cell and/or tissue specific cultures would open a myriad of new opportunities for medical research. Expertise in various in vitro models has been developing over decades, so nowadays we benefit from highly specific in vitro systems imitating every organ of the human body. Moreover, obtaining sufficient number of standardized cells allows for cell transplantation approach with the goal of improving the regeneration of injured/disease affected tissue. However, different cell types bring different needs and place various types of hurdles on the path of regenerative neurology and regenerative cardiology. In this review, written by European experts gathered in Cost European action dedicated to neurology and cardiology-Bioneca, we present the experience acquired by working on two rather different organs: the brain and the heart. When taken into account that diseases of these two organs, mostly ischemic in their nature (stroke and heart infarction), bring by far the largest burden of the medical systems around Europe, it is not surprising that in vitro models of nervous and heart muscle tissue were in the focus of biomedical research in the last decades. In this review we describe and discuss hurdles which still impair further progress of regenerative neurology and cardiology and we detect those ones which are common to both fields and some, which are field-specific. With the goal to elucidate strategies which might be shared between regenerative neurology and cardiology we discuss methodological solutions which can help each of the fields to accelerate their development.


Assuntos
Regeneração Tecidual Guiada , Miocárdio , Regeneração Nervosa , Medicina Regenerativa , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encefalopatias/diagnóstico , Encefalopatias/etiologia , Encefalopatias/terapia , Diferenciação Celular , Terapia Baseada em Transplante de Células e Tecidos , Gerenciamento Clínico , Vesículas Extracelulares/metabolismo , Regeneração Tecidual Guiada/métodos , Cardiopatias/diagnóstico , Cardiopatias/etiologia , Cardiopatias/terapia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Organoides , Medicina Regenerativa/métodos , Transplante de Células-Tronco/efeitos adversos , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo
3.
Aging (Albany NY) ; 12(12): 12251-12267, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32501292

RESUMO

The present study was designed to follow neuroinflammation after ischemic brain injury in the long-term survival rat model. Immunohistochemistry was performed 2 years after 10 min global brain ischemia due to cardiac arrest. For the visualization of the cellular inflammatory reaction microglial marker Iba1 and astrocyte marker GFAP were used. In post-ischemic animals our study revealed significant activation of astrocytes in all tested brain regions (hippocampal CA1 and CA3 areas and dentate gyrus, motor and somatosensory cortex, striatum and thalamus), while microglial activation was only found in CA1 and CA3 areas, and the motor cortex. In the specifically sensitive brain areas microglia and astrocytes showed simultaneously significant activation, while in the resistant brain areas only astrocytes were activated. Thus, there was clear evidence of less intensive neuroinflammation in brain areas resistant to ischemia. Such neuroinflammatory processes are backed by microglia and astrocytes activity even up to 2 years after ischemia-reperfusion brain injury. Our study thus revealed a chronic effect of global cerebral ischemia on the neuroinflammatory reaction in the rat brain even 2 years after the insult.


Assuntos
Doença de Alzheimer/imunologia , Astrócitos/imunologia , Isquemia Encefálica/complicações , Hipocampo/patologia , Microglia/imunologia , Doença de Alzheimer/patologia , Animais , Isquemia Encefálica/imunologia , Modelos Animais de Doenças , Feminino , Hipocampo/citologia , Hipocampo/imunologia , Humanos , Imuno-Histoquímica , Ratos , Fatores de Tempo
4.
Brain Struct Funct ; 222(1): 393-415, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27089885

RESUMO

The importance of the extracellular matrix (ECM) glycoprotein tenascin-C (TnC) and the ECM degrading enzymes, matrix metalloproteinases (MMPs) -2 and -9, in cerebellar histogenesis is well established. This study aimed to examine whether there is a functional relationship between these molecules in regulating structural plasticity of the lateral deep cerebellar nucleus. To this end, starting from postnatal day 21, TnC- or MMP-9-deficient mice were exposed to an enriched environment (EE). We show that 8 weeks of exposure to EE leads to reduced lectin-based staining of perineuronal nets (PNNs), reduction in the size of GABAergic and increase in the number and size of glutamatergic synaptic terminals in wild-type mice. Conversely, TnC-deficient mice showed reduced staining of PNNs compared to wild-type mice maintained under standard conditions, and exposure to EE did not further reduce, but even slightly increased PNN staining. EE did not affect the densities of the two types of synaptic terminals in TnC-deficient mice, while the size of inhibitory, but not excitatory synaptic terminals was increased. In the time frame of 4-8 weeks, MMP-9, but not MMP-2, was observed to influence PNN remodeling and cerebellar synaptic plasticity as revealed by measurement of MMP-9 activity and colocalization with PNNs and synaptic markers. These findings were supported by observations on MMP-9-deficient mice. The present study suggests that TnC contributes to the regulation of structural plasticity in the cerebellum and that interactions between TnC and MMP-9 are likely to be important for these processes to occur.


Assuntos
Cerebelo/fisiologia , Meio Ambiente , Metaloproteinase 9 da Matriz/fisiologia , Plasticidade Neuronal , Tenascina/fisiologia , Animais , Cerebelo/metabolismo , Gelatinases/metabolismo , Masculino , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Sinapses/metabolismo , Tenascina/genética , Tenascina/metabolismo
5.
Neurosci Lett ; 595: 128-33, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25888813

RESUMO

Astrocytes can survive nutrient deprivation (ND) for days. However, the pro-survival strategy of astrocytes under such a metabolic challenge is still not clear. In the present study, we examined the effects of inhibition of two potential steps in energy acquisition during ND: autophagy (using chloroquine) and lipolysis (using orlistat). The inhibition of autophagy did not show significant effects on cell viability until 8-9h of ND. From that point onwards, the number of dead cells gradually increased, reaching ∼60% between 10 and 12h of ND. In addition, early inhibition of autophagy made astrocytes more vulnerable to the latter ND. The inhibition of lipolysis decreased the viability of cells exposed to ND, but this appeared much later compared to the inhibition of autophagy. The application of orlistat prevented ND-related hyperpolarization of the mitochondrial membrane, and mitochondria became swollen. This study clearly shows that autophagy and lipolysis are essential for the survival of astrocytes under ND conditions, which might be related to their role as neuron-supporting cells.


Assuntos
Astrócitos/citologia , Autofagia , Meios de Cultura , Metabolismo Energético , Lipólise , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Sobrevivência Celular , Cloroquina/farmacologia , Lactonas/farmacologia , Lipase/antagonistas & inibidores , Orlistate , Cultura Primária de Células , Prosencéfalo/citologia , Ratos
6.
Prog Brain Res ; 214: 53-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410353

RESUMO

Neural extracellular matrix (ECM) molecules derived from neurons and glial cells accumulate in the extracellular space and regulate synaptic plasticity through modulation of perisomal GABAergic inhibition, intrinsic neuronal excitability, integrin signaling, and activities of L-type Ca(2+) channels, NMDA receptors, and Rho-associated kinase. Genetic or enzymatic targeting of ECM molecules proved to bidirectionally modulate acquisition of memories, depending on experimental conditions, and to promote cognitive flexibility and extinction of fear and drug memories. Furthermore, evidence is accumulating that dysregulation of ECM is linked to major psychiatric and neurodegenerative diseases and that targeting ECM molecules may rescue cognitive deficits in animal models of these diseases. Thus, the ECM emerged as a key component of synaptic plasticity, learning, and memory and as an attractive target for developing new generation of synapse plasticizing drugs.


Assuntos
Encéfalo/citologia , Matriz Extracelular/fisiologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/fisiologia
7.
Prog Brain Res ; 214: 135-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25410356

RESUMO

Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.


Assuntos
Encéfalo/citologia , Matriz Extracelular/enzimologia , Aprendizagem/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Humanos , Peptídeo Hidrolases
8.
Biomed Res Int ; 2014: 907545, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24949481

RESUMO

Recently neuroinflammation has gained a particular focus as a key mechanism of ALS. Several studies in vivo as well as in vitro have nominated immunoglobulin G (IgG) isolated from ALS patients as an active contributor to disease onset and progression. We have shown that ALS IgG affects astroglial Ca(2+) excitability and induces downstream activation of phosphatidylinositol 3-kinase. These studies were hampered by a lack of knowledge of the pathway of entry of immune factors in the CNS. Our MRI data revealed the blood-brain barrier BBB leakage and T cell infiltration into brain parenchyma in ALS G93A rats. Since astrocyte ensheathes blood vessel wall contributing to BBB stability and plays an important role in ALS pathogenesis, we have studied astrocytic membrane proteins water channel aquaporin-4 and the inwardly rectifying potassium channel. In this review, we will summarize data related to BBB disruption with particular emphasis on impaired function of astrocytes in ALS. We will discuss implication of membrane proteins expressed on astrocytic endfeet, aquaporin-4, and inwardly rectifying potassium channel in the pathology of ALS. In addition to ALS-specific IgGs, these membrane proteins are proposed as novel biomarkers of the disease.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Biomarcadores/sangue , Barreira Hematoencefálica/metabolismo , Imunidade Humoral , Inflamação/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Aquaporina 4/sangue , Astrócitos/metabolismo , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Inflamação/sangue , Inflamação/patologia , Ratos
9.
PLoS One ; 9(2): e88921, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586442

RESUMO

Magnetic field as ecological factor has influence on all living beings. The aim of this study was to determine if extremely low frequency magnetic field (ELF-MF, 50 Hz, 0.5 mT) affects oxidative stress in the brain of gerbils submitted to 10-min global cerebral ischemia. After occlusion of both carotid arteries, 3-month-old gerbils were continuously exposed to ELF-MF for 7 days. Nitric oxide and superoxide anion production, superoxide dismutase activity and index of lipid peroxidation were examined in the forebrain cortex, striatum and hippocampus on the 7(th) (immediate effect of ELF-MF) and 14(th) day after reperfusion (delayed effect of ELF-MF). Ischemia per se increased oxidative stress in the brain on the 7(th) and 14(th) day after reperfusion. ELF-MF also increased oxidative stress, but to a greater extent than ischemia, only immediately after cessation of exposure. Ischemic gerbils exposed to ELF-MF had increased oxidative stress parameters on the 7(th) day after reperfusion, but to a lesser extent than ischemic or ELF-MF-exposed animals. On the 14(th) day after reperfusion, oxidative stress parameters in the brain of these gerbils were mostly at the control levels. Applied ELF-MF decreases oxidative stress induced by global cerebral ischemia and thereby reduces possible negative consequences which free radical species could have in the brain. The results presented here indicate a beneficial effect of ELF-MF (50 Hz, 0.5 mT) in the model of global cerebral ischemia.


Assuntos
Isquemia Encefálica/terapia , Encéfalo/efeitos da radiação , Magnetoterapia/métodos , Estresse Oxidativo/efeitos da radiação , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos da radiação , Gerbillinae , Peroxidação de Lipídeos/efeitos da radiação , Campos Magnéticos , Masculino , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
10.
PLoS One ; 9(2): e90697, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587410

RESUMO

Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD) as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m)) in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD), OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m), visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m) during reperfusion, whereas GD caused a robust Δψ(m) negativation. In case no Δψ(m) negativation was observed after OGD, subsequent chemical oxygen deprivation (OD) induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m) hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen) and their hyperpolarizing effect on Δψ(m) during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.


Assuntos
Astrócitos/efeitos dos fármacos , Glucose/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oxigênio/farmacologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Benzimidazóis/metabolismo , Carbocianinas/metabolismo , Hipóxia Celular , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feto , Corantes Fluorescentes/metabolismo , Glucose/deficiência , Peróxido de Hidrogênio/farmacologia , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Oxidantes/farmacologia , Oxigênio/metabolismo , Prosencéfalo , Azida Sódica/farmacologia , Fatores de Tempo
11.
Brain Res Bull ; 101: 37-44, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24365489

RESUMO

The tetanus toxin C (TTC) fragment capacity of being transported in a retrograde way through motoneurons and its nontoxic nature opens the door to a new promising therapeutic strategy for neurodegenerative diseases. In this study, the TTC effect was tested for the first time in animal model of global cerebral ischemia induced by 10-min occlusion of both common carotid arteries. The aim was to evaluate the effect of TTC gene therapy treatment on the development and expression of global cerebral ischemia/reperfusion-induced oxidative stress and motor hyperactivity in Mongolian gerbils. Several oxidative stress and motor behavioral parameters were investigated between 2 h and 14 days after reperfusion. Neuroprotective efficiency of TTC was observed in the forebrain cortex, striatum, hippocampus, and cerebellum at the level of each examined oxidative stress parameter (nitric oxide level, superoxide production, superoxide dismutase activity, and index of lipid peroxidation). Additionally, TTC significantly decreased ischemia-induced motor hyperactivity based on tested parameters (locomotion, stereotypy, and rotations). As judged by biochemical as well as behavioral data, treatment with TTC for the first time showed neuroprotective efficiency by reduction of ischemia-induced oxidative stress and motor hyperactivity and can be a promising strategy for ischemia-induced neuronal damage treatment.


Assuntos
Isquemia Encefálica/terapia , Terapia Genética , Fármacos Neuroprotetores , Fragmentos de Peptídeos/genética , Plasmídeos , Toxina Tetânica/genética , Animais , Encéfalo/fisiopatologia , Isquemia Encefálica/fisiopatologia , Artéria Carótida Primitiva , DNA Recombinante , Gerbillinae , Hipercinese/fisiopatologia , Hipercinese/terapia , Masculino , Atividade Motora/fisiologia , Estresse Oxidativo/fisiologia , Distribuição Aleatória , Fatores de Tempo , Resultado do Tratamento
12.
Cell Biochem Biophys ; 66(3): 513-21, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23292355

RESUMO

The aim of study was to investigate the effects of extremely low frequency magnetic field (ELF-MF; 50 Hz; 0.1, 0.25 and 0.5 mT) on oxidative stress in the brain of 3- (adult) and 10-month-old (middle-aged) gerbils. Nitric oxide (NO) level, superoxide (O2(-)) production, superoxide dismutase (SOD) activity, and index of lipid peroxidation (ILP) were measured in the forebrain cortex, striatum, hippocampus, and cerebellum immediately and 3 days after cessation of 7-day exposure. In all gerbils, ELF-MF significantly increased oxidative stress in all tested brain regions. This effect was correlated with the value of magnetic induction and was higher in middle-aged gerbils. Three days after cessation of exposure, the values of examined parameters were closer to control levels. In adult gerbils, the effect of ELF-MF of 0.1 mT on NO level, O2(-) production and SOD activity was almost fully disappeared, and ILP was at the control level regardless of the value of magnetic induction. In middle-aged gerbils, the effect of ELF-MF was still present but to a lesser degree than those observed immediately after cessation of exposure. These findings pointed out the ability of ELF-MF to induce age- and magnetic induction-dependent modification of oxidative stress in the brain.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Campos Magnéticos , Estresse Oxidativo , Animais , Gerbillinae , Peroxidação de Lipídeos , Masculino , Óxido Nítrico/biossíntese , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo , Fatores de Tempo
13.
Neurotox Res ; 23(1): 79-91, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22669750

RESUMO

The purpose of this study was to determine whether exposure to an extremely low-frequency magnetic field (ELF-MF, 50 Hz) affects the outcome of postischemic damage in the hippocampus of Mongolian gerbils. After 10-min bilateral carotid occlusion, the gerbils were continuously exposed to ELF-MF (average magnetic induction at the center of the cage was 0.5 mT) for 7 days. The impact of ELF-MF was estimated immediately (the 7th day after reperfusion) and 7 days after cessation of exposure (the 14th day after reperfusion) compared with ischemic gerbils without ELF-MF exposure. Applying stereological methods, histological evaluation of changes in the hippocampus was done for determining its volume, volume densities of degenerating neurons and astrocytes, as well as the number of microglial cells per unit area. ELF-MF per se did not induce any morphological changes, while 10-min global cerebral ischemia led to neuronal death, especially in CA1 region of the hippocampus, as expected. Ischemic gerbils exposed to ELF-MF had significantly a lower degree of cell loss in the examined structure and greater responses of astrocytes and microglial cells than postischemic gerbils without exposure on the seventh day after reperfusion (immediate effect of ELF-MF). Similar response was observed on the 14th day after reperfusion (delayed effect of ELF-MF); however, differences in measured parameters were low and insignificant. Applied ELF-MF has possible neuroprotective function in the hippocampus, as the most sensitive brain structure in the model of global cerebral ischemia, through reduction of neuronal death and activation of astrocytes and microglial cells.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Hipocampo/patologia , Campos Magnéticos , Neuroglia/patologia , Neurônios/patologia , Animais , Gerbillinae , Masculino , Resultado do Tratamento
14.
Int J Radiat Biol ; 88(4): 359-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22221164

RESUMO

PURPOSE: The aim of this study was to investigate the influence of extremely low frequency magnetic field (ELF-MF) on different behavior parameters (locomotion, stereotypy, and immobility) in 3- and 10-month-old male Mongolian gerbils. MATERIALS AND METHODS: The animals were continuously exposed to ELF-MF (50 Hz; 0.1, 0.25 and 0.5 mT) for seven days. Their behavior was monitored for 60 min in the open field after the 1st, 2nd, 4th, and 7th day of exposure (immediate effect), and three days after ELF-MF exposure had been ceased (delayed effect). RESULTS: In 3-month-old gerbils, exposure to ELF-MF (0.1, 0.25 and 0.5 mT) increased motor behavior (locomotion and stereotypy), and consequently decreased immobility. Additionally, ELF-MF had delayed effect (except 0.25 mT) on stereotypy and immobility. In 10-month-old gerbils, ELF-MF of 0.1, 0.25 and 0.5 mT induced decrease, slight increase, and pronounced stimulation of motor behavior, respectively. Regardless of magnetic induction value, increased motor behavior was observed three days after ELF-MF exposure has been ceased (delayed effect). CONCLUSIONS: It can be proposed that the specific temporal patterns of ELF-MF-induced motor behavior changes in 3- and 10-month-old gerbils are a consequence of age-dependent morpho-functional differences in the brain structures responsible for a control of motor behavior.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Campos Magnéticos/efeitos adversos , Atividade Motora/fisiologia , Animais , Encéfalo/fisiologia , Gerbillinae , Locomoção/fisiologia , Masculino , Fatores de Tempo
15.
Brain Struct Funct ; 217(2): 411-20, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21706330

RESUMO

MRI was employed to follow the neurodegenerative foci and the localization of inflammatory cells by magnetically labeled CD4+ or CD8+ lymphocytes in the ischemia/reperfusion long-lived rats (9 and 13 months after 10 min of cardiac arrest). MRI of ischemic rats showed: (1) blood-brain barrier (BBB) leakage in the area of the dorsal hippocampus and brainstem-hindbrain level in basal cerebellum, (2) unlike anti-CD8 magnetic antibodies anti-CD4 ultra small paramagnetic iron oxide particles (USPIO) antibodies revealed hypointense areas in the brainstem-interbrain region and caudoputamen not found in animals that were not injected with USPIO antibodies, and (3) dilation in the retrosplenial area. Immunocytochemistry revealed microglial activation in the hippocampus and striatum, with indications of activation in thalamic lateral dorsal nuclei and the subventricular zone. In the CA1 and CA3 regions, it was noted that OX42- and ED1-positive granules appear in neuronal somata. Immunostaining of lymphocytes with TCR confirmed the T-cell presence in ischemic brain parenchyma of the hippocampus and striatum. The above observations thus point to a persistent dysfunction of BBB that in long-term may still lead to infiltration of T cells that are predominantly of helper (CD4+) type. Such inflammatory processes are backed by microglial activity even up to 1 year after ischemia/reperfusion. Moreover, in these animals an augmented expression of neurogenesis markers and neuroblast migration was also revealed in the subventricular zone. Thus, a balance of degenerative processes and inflammatory surveillance with neurogenesis could determine the long-term outcome of global ischemia survival or the previously proposed formation of amyloid plaques and Alzheimer's-type dementia.


Assuntos
Lesões Encefálicas/fisiopatologia , Antígeno CD11b/metabolismo , Displasia Ectodérmica Anidrótica Tipo 1/metabolismo , Encefalite/fisiopatologia , Neurogênese/fisiologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Biomarcadores/metabolismo , Barreira Hematoencefálica/fisiopatologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Encefalite/metabolismo , Encefalite/patologia , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Imageamento por Ressonância Magnética , Modelos Animais , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Rombencéfalo/metabolismo , Rombencéfalo/patologia , Taxa de Sobrevida , Fatores de Tempo
16.
Behav Brain Res ; 228(2): 241-6, 2012 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-22119248

RESUMO

The purpose of this study was to evaluate behavioural effects of an extremely low frequency magnetic field (ELF-MF) in 3-month-old Mongolian gerbils submitted to global cerebral ischemia. After 10-min occlusion of both common carotid arteries, the gerbils were placed in the vicinity of an electromagnet and continuously exposed to ELF-MF (50Hz, 0.5mT) for 7 days. Their behaviour (locomotion, stereotypy, rotations, and immobility) was monitored on days 1, 2, 4, 7, and 14 after reperfusion for 60min in the open field. It was shown that the 10-min global cerebral ischemia per se induced a significant motor activity increase (locomotion, stereotypy and rotations), and consequently immobility decrease until day 4 after reperfusion, compared to control gerbils. Exposure to ELF-MF inhibited development of ischemia-induced motor hyperactivity during the whole period of registration, but significantly in the first 2 days after reperfusion, when the postischemic hyperactivity was most evident. Motor activity of these gerbils was still significantly increased compared to control ones, but only on day 1 after reperfusion. Our results revealed that the applied ELF-MF (50Hz, 0.5mT) decreased motor hyperactivity induced by the 10-min global cerebral ischemia, via modulation of the processes that underlie this behavioural response.


Assuntos
Isquemia Encefálica/fisiopatologia , Imãs , Movimento/efeitos da radiação , Animais , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Gerbillinae , Imobilização/fisiologia , Locomoção/efeitos da radiação , Masculino , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Movimento/fisiologia , Distribuição Aleatória , Reperfusão , Rotação , Comportamento Estereotipado/efeitos da radiação , Fatores de Tempo
17.
Phytomedicine ; 18(13): 1137-43, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21757330

RESUMO

The beneficial effects of antioxidant nutrients, as well as complex plant extracts, in cerebral ischemia/reperfusion brain injury are well known. Mediterranean diet, rich in olive products, is associated with lower incidence of cardiovascular disease, cancer, inflammation and stroke. In this study, the possible neuroprotective effect of standardized dry olive leaf extract (OLE) is investigated for the first time. Transient global cerebral ischemia in Mongolian gerbils was used to investigate the OLE effects on different parameters of oxidative stress and neuronal damage in hippocampus. The biochemical measurements took place at different time points (80min, 2, 4 and 24h) after reperfusion. The effects of applied OLE were compared with effects of quercetin, a known neuroprotective plant flavonoid. Pretreatment with OLE (100mg/kg, per os) significantly inhibited production of superoxide and nitric oxide, decreased lipid peroxidation, and increased superoxide dismutase activity in all time points examined. Furthermore, OLE offered histological improvement as seen by decreasing neuronal damage in CA1 region of hippocampus. The effects of applied OLE were significantly higher than effects of quercetin (100mg/kg, per os). Our results indicate that OLE exerts a potent neuroprotective activity against neuronal damage in hippocampus after transient global cerebral ischemia, which could be attributed to its antioxidative properties.


Assuntos
Hipocampo/irrigação sanguínea , Hipocampo/efeitos dos fármacos , Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Olea/química , Extratos Vegetais/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Gerbillinae , Ataque Isquêmico Transitório/metabolismo , Ataque Isquêmico Transitório/prevenção & controle , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Folhas de Planta/química , Quercetina/análogos & derivados , Quercetina/farmacologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle
18.
Anat Rec (Hoboken) ; 294(6): 1057-65, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21538930

RESUMO

Post-ischemic injury of the hippocampus unrolls at different levels and has both functional and structural implications. The deficiency in neuron energy metabolism is an initiating factor. We performed transmission electron microscopic (TEM) comparative analysis of mitochondria in excitatory spine synapses in CA1 stratum radiatum and CA3 hippocampal areas after 5 min of global cerebral ischemia in Mongolian gerbils, 4 and 7 days after reperfusion. Electron microscopy and unbiased morphometric methods were used to evaluate synaptic plasticity, and the number and size of mitochondria in synaptic terminals. We compared the morphological organization of mitochondria in presynaptic terminals between CA1 and CA3 areas in control and post-ischemic condition according to the following morphometric parameters: mitochondrial volume fraction, mitochondrial frequency in CA1 and CA3 terminals, mean number of mitochondria per presynaptic terminal, frequency of damaged mitochondria in terminals, and density of presynaptic terminals. Our ultrastructural study revealed statistically significant differences in morphometric parameters between CA1 and CA3 areas in control conditions, as well as in post-ischemic conditions. Also, we found temporal differences in measured parameters obtained 4 and 7 days after reperfusion. This study showed significant morphological differences in the organization of mitochondria in excitatory spine synapses between CA1 and CA3 areas, which corresponded with already known differences in functionality and sensitivity to the ischemic insult. Our conclusion is that revealed post-ischemic changes in mitochondrial distribution in presynaptic CA1 and CA3 terminals could be an indicator of hippocampal metabolic dysfunction and synaptic plasticity.


Assuntos
Isquemia Encefálica/patologia , Região CA1 Hipocampal/ultraestrutura , Região CA3 Hipocampal/ultraestrutura , Mitocôndrias/ultraestrutura , Células Piramidais/ultraestrutura , Animais , Gerbillinae , Masculino
19.
Int J Dev Neurosci ; 29(6): 645-54, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21382467

RESUMO

The present study was undertaken to examine spatial and temporal patterns of oxidative stress rate in the brain of Mongolian gerbils submitted to different duration of global ischemia/reperfusion. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. We followed the temporal ischemia-induced oxidative stress rate, the most important factor that exacerbates brain damage by reperfusion, starting from 24 h up to 28 days after reperfusion. The spatial ischemia-induced oxidative stress distribution was measured parallely in different brain regions: forebrain cortex, striatum, hippocampus and cerebellum. Post-ischemic effects were followed in vivo by monitoring the neurological status of whole animals and at the intracellular level by standard biochemical assays in different brain regions. We measured superoxide production, superoxide dismutase activity, nitric oxide production, index of lipid peroxidation, and reduced glutathione. Our results revealed a pattern of dynamic changes in each oxidative stress parameter that corresponded with ischemia duration in all tested brain structures. The highest levels were obtained in the first 24h after the insult. After that, they slowly returned to nearly control values 28 days after reperfusion (with the exception of SOD activity that returned to control values at fourth day after reperfusion). The most sensitive oxidative stress parameter was index of lipid peroxidation. Our study confirmed spatial distribution of ischemia-induced oxidative stress. Tested brain structures showed different sensitivity to each oxidative stress parameter, although their basal levels were similar. These new findings could be valuable for creation and strategy of post-ischemic therapy.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Gerbillinae , Estresse Oxidativo/fisiologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Encéfalo/patologia , Glutationa/metabolismo , Peroxidação de Lipídeos , Masculino , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Superóxido Dismutase/metabolismo
20.
Mol Cell Biochem ; 342(1-2): 35-50, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20422259

RESUMO

We investigated MK-801 effect on ischemia-induced oxidative stress-the most important factor that exacerbates brain damage by reperfusion. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. Immediately after the occlusion, MK-801 (3 mg/kg i.p.) or saline were given in normothermic conditions. The MK-801 effects were followed in vivo by monitoring the neurological status of animals and at the intracellular level by standard biochemical assays. We investigated nitric oxide levels, superoxide production, superoxide dismutase activity, index of lipid peroxidation (ILP), and reduced glutathione content in hippocampus, striatum, forebrain cortex, and cerebellum. The measurements took place at different times (1, 2, 4, 7, 14, and 28 days) after reperfusion. Increased duration of cerebral ischemia resulted in a progressive induction of oxidative stress. Our results revealed pattern of dynamic changes in each oxidative stress parameter level which corresponded with ischemia duration in all tested brain structures. Most sensitive oxidative stress parameters were ILP and superoxide production. Our study confirmed spatial distribution of ischemia-induced oxidative stress. Tested brain structures showed different sensitivity to each oxidative stress parameter. As judged by biochemical and neurological data, applied MK-801 showed neuroprotective efficiency by reduction of ischemia-induced oxidative stress in brain.


Assuntos
Isquemia Encefálica/fisiopatologia , Encéfalo/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Artéria Carótida Primitiva/efeitos dos fármacos , Gerbillinae , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Reperfusão , Superóxido Dismutase/metabolismo , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA