Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Talanta ; 273: 125841, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460421

RESUMO

The approach based on a combination of isothermal recombinase polymerase amplification (RPA), 2'-deoxyuridine-5'-triphosphate modified with tyrosine aromatic group (dUTP-Y1), and direct voltammetric detection of RPA product carrying electroactive labels was successfully applied to the potato pathogen Dickeya solani. The artificial nucleotide dUTP-Y1 demonstrated a good compatibility with RPA, enabling by targeting a section of D. solani genome with a unique sequence to produce the full-size modified products at high levels of substitution of dTTP by dUTP-Y1 (up to 80-90 %) in the reaction mixture. The optimized procedure of square wave voltammetry allowed to reliably detect the product generated by RPA at 80 % substitution of dTTP by dUTP-Y1 (dsDNA-Y1) in microliter sample volumes on the surface of disposable carbon screen printed electrodes at the potential of about 0.6 V. The calibration curve for the amplicon detection was linear in coordinates 'Ip, A vs. Log (c, M)' within the 0.05-1 µM concentration range. The limit of detection for dsDNA-Y1 was estimated as 8 nM. The sensitivity of the established electrochemical approach allowed to detect amplicons generated in a single standard 50 µL RPA reaction after their purification with silica-coated magnetic beads. The overall detectability of D. solani with the suggested combination of RPA and voltammetric registration of dsDNA-Y1 can be as low as a few copies of bacterial genome per standard reaction. In total, amplification, purification, and electrochemical detection take about 120-150 min. Considering the potential of direct electrochemical analysis for miniaturization, as well as compliance with low-cost and low-power requirements, the findings provide grounds for future development of microfluidic devices integrating isothermal amplification, amplicon purification and detection based on the tyrosine modified nucleotide for the purpose of 'on-site' detection of various pathogens.


Assuntos
Dickeya , Polifosfatos , Recombinases , Solanum tuberosum , DNA , Enterobacteriaceae , Nucleotídeos , Desoxiuridina , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
2.
J Pharm Biomed Anal ; 241: 115977, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38241909

RESUMO

Three novel 2'-deoxyuridine-5'-triphosphates modified with 4-nitrophenyl groups via various linkers (dUTP-N1, dUTP-N2, and dUTP-N3) were tested as bearers of reducible electroactive labels as well as substrates suitable for enzymes used in polymerase chain reaction (PCR) and recombinase polymerase amplification (RPA) with a potential application to direct electrochemical detection of double-stranded deoxyribonucleic acid (dsDNA). In cyclic and square wave voltammograms on carbon screen printed electrodes, the labeled dUTP have demonstrated distinct reduction peaks at potentials of -0.7 V to -0.9 V (phosphate buffer, pH 7.4). The reduction peak currents of dUTP-N derivatives were found to increase with their molar concentrations. The dUTP-N3 with a double bond in the linker had the lowest reduction potential (about 100 mV less negative) among the derivatives studied. Further, dUTP-N nucleotides were tested as substrates in PCR and RPA to incorporate the electroactive labels into 90, 210, or 206 base pair long dsDNA amplicons. However, only a dUTP-N1 derivative with a shorter linker without the double bond demonstrated satisfactory compatibility with both PCR and RPA, though with a low reaction output of modified dsDNA amplicons (at 100% substitution of dTTP). The dsDNA amplicons produced by PCR with 85% substitution of dTTP by the dUTP-N1 in the reaction mixture were successfully detected by square wave voltammetry at micromolar concentrations at high square wave frequency.


Assuntos
DNA , Nitrofenóis , DNA/química , Nucleotídeos , Desoxiuridina
3.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-38003667

RESUMO

RNA modifications, particularly N6-methyladenosine (m6A), are pivotal regulators of RNA functionality and cellular processes. We analyzed m6A modifications by employing Oxford Nanopore technology and the m6Anet algorithm, focusing on the HepG2 cell line. We identified 3968 potential m6A modification sites in 2851 transcripts, corresponding to 1396 genes. A gene functional analysis revealed the active involvement of m6A-modified genes in ubiquitination, transcription regulation, and protein folding processes, aligning with the known role of m6A modifications in histone ubiquitination in cancer. To ensure data robustness, we assessed reproducibility across technical replicates. This study underscores the importance of evaluating algorithmic reproducibility, especially in supervised learning. Furthermore, we examined correlations between transcriptomic, translatomic, and proteomic levels. A strong transcriptomic-translatomic correlation was observed. In conclusion, our study deepens our understanding of m6A modifications' multifaceted impacts on cellular processes and underscores the importance of addressing reproducibility concerns in analytical approaches.


Assuntos
Nanoporos , Metilação , Proteômica , Reprodutibilidade dos Testes , RNA/metabolismo , Adenosina/metabolismo , Linhagem Celular
4.
J Pharm Biomed Anal ; 236: 115737, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37774487

RESUMO

The 2'-deoxyuridine-5'-triphosphates modified with fluorescein (dUTP-Fl) or rhodamine (dUTP-Rh) were tested as bearers of electroactive labels and as proper substrates for polymerases used in polymerase chain reaction (PCR) and isothermal recombinase polymerase amplification (RPA) with the aim of electrochemical detection of double-stranded DNA (dsDNA) amplification products. For this purpose, electrochemical behavior of free fluorescein and rhodamine as well as the modified nucleotides, dUTP-Fl and dUTP-Rh, was studied by cyclic (CV) and square wave (SWV) voltammetry on carbon screen printed electrodes. Both free fluorescein and dUTP-Fl underwent a two-step oxidation at the peak potentials (Ep) of 0.6-0.7 V and 0.8-0.9 V (phosphate buffer, pH 7.4). The reduction peaks of fluorescein and dUTP-Fl were registered between -0.9 V and -1 V, but they did not depend on concentration. The free rhodamine and dUTP-Rh have demonstrated the well-defined oxidation peaks at 0.8-0.9 V. In addition, the distinct reduction peaks at Ep between -0.8 V and -0.9 V were registered for both rhodamine and dUTP-Rh. The dUTP-Fl and dUTP-Rh were further tested as substrates to incorporate an electroactive label into 210 or 206 base pair long dsDNA amplicons generated either by PCR or RPA. Among two dUTP derivatives tested, dUTP-Fl revealed significantly better compatibility with PCR and RPA, producing the full-size amplicons at 50-90% substitution of dTTP in the reaction mixture. In the PCR, the best compromise between amplicon output and labeling was achieved at the dUTP-Fl : dTTP and dUTP-Rh : dTTP molar ratios of 70% : 30% and 20% : 80% in the PCR mixture, respectively, allowing the direct electrochemical detection of amplicons at micromolar concentrations. Alongside with fluorescence DNA assays, the fluorescein and rhodamine modified dUTP appear as promising electroactive labels to develop direct electrochemical DNA assays for detecting PCR and RPA products.


Assuntos
DNA , Desoxiuridina , Rodaminas , Fluoresceína , DNA/análise , Reação em Cadeia da Polimerase
5.
Biochemistry (Mosc) ; 88(Suppl 1): S88-S104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37069116

RESUMO

ß-amyloid (Aß) is comprised of a group of peptides formed as a result of cleavage of the amyloid precursor protein by secretases. Aß aggregation is considered as a central event in pathogenesis of Alzheimer's disease, the most common human neurodegenerative disorder. Molecular mechanisms of Aß aggregation have intensively being investigated using synthetic Aß peptides by methods based on monitoring of aggregates, including determination of their size and structure. In this review, an orthogonal approach to the study of Aß aggregation is considered, which relies on electrochemical registration of the loss of peptide monomers. Electrochemical analysis of Aß (by voltammetry and amperometric flow injection analysis) is based on registration of the oxidation signal of electroactive amino acid residues of the peptide on an electrode surface. The Aß oxidation signal disappears, when the peptide is included in the aggregate. The advantages and disadvantages of electrochemical analysis for the study of spontaneous and metal-induced aggregation of Aß, comparative analysis of various peptide isoforms, and study of the process of complexation of metal ions with the metal-binding domain of Aß are discussed. It is concluded that the combined use of the electrochemical method and the methods based on detection of Aß aggregates makes it possible to obtain more complete information about the mechanisms of peptide aggregation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Oxirredução , Aminoácidos , Fragmentos de Peptídeos/química
6.
Front Mol Biosci ; 9: 944639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545510

RESUMO

It has been shown that the best coverage of the HepG2 cell line transcriptome encoded by genes of a single chromosome, chromosome 18, is achieved by a combination of two sequencing platforms, Illumina RNA-Seq and Oxford Nanopore Technologies (ONT), using cut-off levels of FPKM > 0 and TPM > 0, respectively. In this study, we investigated the extent to which the combination of these transcriptomic analysis methods makes it possible to achieve a high coverage of the transcriptome encoded by the genes of other human chromosomes. A comparative analysis of transcriptome coverage for various types of biological material was carried out, and the HepG2 cell line transcriptome was compared with the transcriptome of liver tissue cells. In addition, the contribution of variability in the coverage of expressed genes in human transcriptomes to the creation of a draft human transcriptome was evaluated. For human liver tissues, ONT makes an extremely insignificant contribution to the overall coverage of the transcriptome. Thus, to ensure maximum coverage of the liver tissue transcriptome, it is sufficient to apply only one technology: Illumina RNA-Seq (FPKM > 0).

7.
Biology (Basel) ; 10(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827124

RESUMO

Long-read direct RNA sequencing developed by Oxford Nanopore Technologies (ONT) is quickly gaining popularity for transcriptome studies, while fast turnaround time and low cost make it an attractive instrument for clinical applications. There is a growing interest to utilize transcriptome data to unravel activated biological processes responsible for disease progression and response to therapies. This trend is of particular interest for precision medicine which aims at single-patient analysis. Here we evaluated whether gene abundances measured by MinION direct RNA sequencing are suited to produce robust estimates of pathway activation for single sample scoring methods. We performed multiple RNA-seq analyses for a single sample that originated from the HepG2 cell line, namely five ONT replicates, and three replicates using Illumina NovaSeq. Two pathway scoring methods were employed-ssGSEA and singscore. We estimated the ONT performance in terms of detected protein-coding genes and average pairwise correlation between pathway activation scores using an exhaustive computational scheme for all combinations of replicates. In brief, we found that at least two ONT replicates are required to obtain reproducible pathway scores for both algorithms. We hope that our findings may be of interest to researchers planning their ONT direct RNA-seq experiments.

8.
J Proteome Res ; 19(12): 4901-4906, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33202127

RESUMO

One of the main goals of the Chromosome-Centric Human Proteome Project (C-HPP) is detection of "missing proteins" (PE2-PE4). Using the UPS2 (Universal proteomics standard 2) set as a model to simulate the range of protein concentrations in the cell, we have previously shown that 2D fractionation enables the detection of more than 95% of UPS2 proteins in a complex biological mixture. In this study, we propose a novel experimental workflow for protein detection during the analysis of biological samples. This approach is extremely important in the context of the C-HPP and the neXt-MP50 Challenge, which can be solved by increasing the sensitivity and the coverage of the proteome encoded by a particular human chromosome. In this study, we used 2D fractionation for in-depth analysis of the proteins encoded by human chromosome 18 (Chr 18) in the HepG2 cell line. Use of 2D fractionation increased the sensitivity of the SRM SIS method by 1.3-fold (68 and 88 proteins were identified by 1D fractionation and 2D fractionation, respectively) and the shotgun MS/MS method by 2.5-fold (21 and 53 proteins encoded by Chr 18 were detected by 1D fractionation and 2D fractionation, respectively). The results of all experiments indicate that 111 proteins encoded by human Chr 18 have been identified; this list includes 42% of the Chr 18 protein-coding genes and 67% of the Chr 18 transcriptome species (Illumina RNaseq) in the HepG2 cell line obtained using a single sample. Corresponding mRNAs were not registered for 13 of the detected proteins. The combination of 2D fractionation technology with SRM SIS and shotgun mass spectrometric analysis did not achieve full coverage, i.e., identification of at least one protein product for each of the 265 protein-coding genes of the selected chromosome. To further increase the sensitivity of the method, we plan to use 5-10 crude synthetic peptides for each protein to identify the proteins and select one of the peptides based on the obtained mass spectra for the synthesis of an isotopically labeled standard for subsequent quantitative analysis. Data are available via ProteomeXchange with the identifier PXD019263.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Cromossomos Humanos , Humanos , Proteoma/genética , Transcriptoma
9.
Biomolecules ; 10(6)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630528

RESUMO

The coordination of zinc ions by histidine residues of amyloid-beta peptide (Aß) plays a critical role in the zinc-induced Aß aggregation implicated in Alzheimer's disease (AD) pathogenesis. The histidine to arginine substitution at position 6 of the Aß sequence (H6R, English mutation) leads to an early onset of AD. Herein, we studied the effects of zinc ions on the aggregation of the Aß42 peptide and its isoform carrying the H6R mutation (H6R-Aß42) by circular dichroism spectroscopy, dynamic light scattering, turbidimetric and sedimentation methods, and bis-ANS and thioflavin T fluorescence assays. Zinc ions triggered the occurrence of amorphous aggregates for both Aß42 and H6R-Aß42 peptides but with distinct optical properties. The structural difference of the formed Aß42 and H6R-Aß42 zinc-induced amorphous aggregates was also supported by the results of the bis-ANS assay. Moreover, while the Aß42 peptide demonstrated an increase in the random coil and ß-sheet content upon complexing with zinc ions, the H6R-Aß42 peptide showed no appreciable structural changes under the same conditions. These observations were ascribed to the impact of H6R mutation on a mode of zinc/peptide binding. The presented findings further advance the understanding of the pathological role of the H6R mutation and the role of H6 residue in the zinc-induced Aß aggregation.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Mutação , Agregados Proteicos/efeitos dos fármacos , Zinco/farmacologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Humanos , Zinco/metabolismo
10.
J Proteome Res ; 18(12): 4273-4276, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31621326

RESUMO

The Chromosome-centric Human Proteome Project aims at characterizing the expression of proteins encoded in each chromosome at the tissue, cell, and subcellular levels. The proteomic profiling of a particular tissue or cell line commonly results in a substantial portion of proteins that are not observed (the "missing" proteome). The concurrent transcriptome profiling of the analyzed tissue/cells samples may help define the set of untranscribed genes in a given type of tissue or cell, thus narrowing the size of the "missing" proteome and allowing us to focus on defining the reasons behind undetected proteins, namely, whether they are technical (insufficient sensitivity of protein detection) or biological (correspond to not-translated transcripts). We believe that the quantitative polymerase chain reaction (qPCR) can provide an efficient approach to studying low-abundant transcripts related to undetected proteins due to its high sensitivity and the possibility of ensuring the specificity of detection via the simple Sanger sequencing of PCR products. Here we illustrated the feasibility of such an approach on a set of low-abundant transcripts. Although inapplicable to the analysis of whole transcriptome, qPCR can successfully be utilized to profile a limited cohort of transcripts encoded on a particular chromosome, as we previously demonstrated for human chromosome 18.


Assuntos
Proteoma/genética , Proteômica/métodos , Cromossomos Humanos , Cromossomos Humanos Par 18 , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Reação em Cadeia da Polimerase/métodos
11.
J Proteome Res ; 18(1): 120-129, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30480452

RESUMO

This work continues the series of the quantitative measurements of the proteins encoded by different chromosomes in the blood plasma of a healthy person. Selected Reaction Monitoring with Stable Isotope-labeled peptide Standards (SRM SIS) and a gene-centric approach, which is the basis for the implementation of the international Chromosome-centric Human Proteome Project (C-HPP), were applied for the quantitative measurement of proteins in human blood plasma. Analyses were carried out in the frame of C-HPP for each protein-coding gene of the four human chromosomes: 18, 13, Y, and mitochondrial. Concentrations of proteins encoded by 667 genes were measured in 54 blood plasma samples of the volunteers, whose health conditions were consistent with requirements for astronauts. The gene list included 276, 329, 47, and 15 genes of chromosomes 18, 13, Y, and the mitochondrial chromosome, respectively. This paper does not make claims about the detection of missing proteins. Only 205 proteins (30.7%) were detected in the samples. Of them, 84, 106, 10, and 5 belonged to chromosomes 18, 13, and Y and the mitochondrial chromosome, respectively. Each detected protein was found in at least one of the samples analyzed. The SRM SIS raw data are available in the ProteomeXchange repository (PXD004374, PASS01192).


Assuntos
Cromossomos Humanos/química , Plasma/química , Proteoma , Cromossomos Humanos/genética , Cromossomos Humanos Par 13/química , Cromossomos Humanos Par 18/química , Cromossomos Humanos Y/química , Bases de Dados de Proteínas , Voluntários Saudáveis , Humanos , Mitocôndrias/ultraestrutura , Proteoma/genética
12.
J Alzheimers Dis ; 66(1): 263-270, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30282362

RESUMO

Angiotensin converting enzyme (ACE) is involved in proteolytic processing of the amyloid-ß(Aß) peptide implicated in the development of Alzheimer's disease (AD) and known products of ACE-based processing of Aß42 are characterized by reduced aggregability and cytotoxicity. Recently it has been demonstrated that ACE can act as an arginine specific endopeptidase cleaving the N-terminal pentapeptide (Aß1-5) from synthetic Aß peptide analogues. In the context of proteolytic processing of full length Aß42, this suggests possible formation of Aß6-42 species. The aim of this study was to test a hypothesis that some N-terminally truncated Aß peptide(s) could retain aggregability and neurotoxic properties typical for Aß42. We have investigated aggregability of two amyloid-ß peptides, Aß6-42 and isoD7-Aß6-42, mimicking potential proteolytic products of Aß42 and isoD7-Aß42, and evaluated their effects on the repertoire of brain Aß binding proteins, and cytotoxicity towards neuroblastoma SH-SY5Y cells. Aggregability of isoD7-Aß6-42 and Aß6-42 was higher than that of full-length peptides Aß42 and isoD7-Aß42, while the repertoire of mouse brain Aß binding proteins dramatically decreased. Aß6-42 and isoD7-Aß6-42 exhibited higher neurotoxicity towards SH-SY5Y cells than Aß42 and isoD7-Aß42, respectively. They effectively stimulated production of ROS and NO, and also TNFα secretion by cells. Thus, our results suggest that ACE-dependent processing of full-length Aßs could result in formation of more pathogenic peptides.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Materiais Biomiméticos/metabolismo , Materiais Biomiméticos/toxicidade , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/toxicidade , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptidil Dipeptidase A/genética
13.
Front Neurosci ; 12: 518, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210271

RESUMO

Cerebral ß-amyloidosis, an accumulation in the patient's brain of aggregated amyloid-ß (Aß) peptides abnormally saturated by divalent biometal ions, is one of the hallmarks of Alzheimer's disease (AD). Earlier, we found that exogenously administrated synthetic Aß with isomerized Asp7 (isoD7-Aß) induces Aß fibrillar aggregation in the transgenic mice model of AD. IsoD7-Aß molecules have been implied to act as seeds enforcing endogenous Aß to undergo pathological aggregation through zinc-mediated interactions. On the basis of our findings on zinc-induced oligomerization of the metal-binding domain of various Aß species, we hypothesize that upon phosphorylation of Ser8, isoD7-Aß loses its ability to form zinc-bound oligomeric seeds. In this work, we found that (i) in vitro isoD7-Aß with phosphorylated Ser8 (isoD7-pS8-Aß) is less prone to spontaneous and zinc-induced aggregation in comparison with isoD7-Aß and intact Aß as shown by thioflavin T fluorimetry and dynamic light scattering data, and (ii) intravenous injections of isoD7-pS8-Aß significantly slow down the progression of institutional ß-amyloidosis in AßPP/PS1 transgenic mice as shown by the reduction of the congophilic amyloid plaques' number in the hippocampus. The results support the role of the zinc-mediated oligomerization of Aß species in the modulation of cerebral ß-amyloidosis and demonstrate that isoD7-pS8-Aß can serve as a potential molecular tool to block the aggregation of endogenous Aß in AD.

14.
Front Mol Neurosci ; 11: 302, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210292

RESUMO

The triggers of late-onset sporadic Alzheimer's disease (AD) are still poorly understood. Impairment of protein phosphorylation with age is well-known; however, the role of the phosphorylation in ß-amyloid peptide (Aß) is not studied sufficiently. Zinc-induced oligomerization of Aß represents a potential seeding mechanism for the formation of neurotoxic Aß oligomers and aggregates. Phosphorylation of Aß by Ser8 (pS8-Aß), localized inside the zinc-binding domain of the peptide, may significantly alter its zinc-induced oligomerization. Indeed, using dynamic light scattering, we have shown that phosphorylation by Ser8 dramatically reduces zinc-induced aggregation of Aß, and moreover pS8-Aß suppresses zinc-driven aggregation of non-modified Aß in an equimolar mixture. We have further analyzed the effect of pS8-Aß on the progression of cerebral amyloidosis with serial retro-orbital injections of the peptide in APPSwe/PSEN1dE9 murine model of AD, followed by histological analysis of amyloid burden in hippocampus. Unlike the non-modified Aß that has no influence on the amyloidosis progression in murine models of AD, pS8-Aß injections reduced the number of amyloid plaques in the hippocampus of mice by one-third. Recently shown inhibition of Na+,K+-ATPase activity by Aß, which is thought to be a major contributor to neuronal dysfunction in AD, is completely reversed by phosphorylation of the peptide. Thus, several AD-associated pathogenic properties of Aß are neutralized by its phosphorylation.

15.
J Alzheimers Dis ; 63(2): 539-550, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29630553

RESUMO

Zinc-induced aggregation of amyloid-ß peptides (Aß) is considered to contribute to the pathogenesis of Alzheimer's disease. While glycosaminoglycans (GAGs) that are commonly present in interneuronal space are known to enhance Aß self-aggregation in vitro, the impact of GAGs on the formation of zinc-induced amorphous Aß aggregates has not yet been thoroughly studied. Here, employing dynamic light scattering, bis-ANS fluorimetry, and sedimentation assays, we demonstrate that heparin serving as a representative GAG modulates the kinetics of zinc-induced Aß42 aggregation in vitro by slowing the rate of aggregate formation and aggregate size growth. By using synthetic Aß16 peptides to model the Aß metal-binding domain (MBD), heparin was found to effectively interact with MBDs in complex with zinc ions. We suggest that heparin adsorbs to the surface of growing zinc-induced Aß42 aggregates via electrostatic interactions, thus creating a steric hindrance that inhibits further inclusion of monomeric and/or oligomeric zinc-Aß42 complexes. Furthermore, the adsorbed heparin can interfere with the zinc-bridging mechanism of Aß42 aggregation, requiring the formation of two zinc-mediated interaction interfaces in the MBD. As revealed by computer simulations of the zinc-Aß16 homodimer complexed with a heparin chain, heparin can interact with the MBD via polar contacts with residues Arg-5 and Tyr-10, resulting in a conformational rearrangement that hampers the formation of the second zinc-mediated interaction in the MBD interface. The findings of this study suggest that GAGs, which are common in the in vivo macromolecular environment, may have a substantial impact on the time course of zinc-induced Aß aggregation.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Zinco/química , Peptídeos beta-Amiloides/metabolismo , Heparina/classificação , Heparina/metabolismo , Íons/química , Íons/metabolismo , Cinética , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos , Agregação Patológica de Proteínas/metabolismo , Eletricidade Estática
16.
J Proteome Res ; 16(12): 4311-4318, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28956606

RESUMO

In this work targeted (selected reaction monitoring, SRM, PASSEL: PASS00697) and panoramic (shotgun LC-MS/MS, PRIDE: PXD00244) mass-spectrometric methods as well as transcriptomic analysis of the same samples using RNA-Seq and PCR methods (SRA experiment IDs: SRX341198, SRX267708, SRX395473, SRX390071) were applied for quantification of chromosome 18 encoded transcripts and proteins in human liver and HepG2 cells. The obtained data was used for the estimation of quantitative mRNA-protein ratios for the 275 genes of the selected chromosome in the selected tissues. The impact of methodological limitations of existing analytical proteomic methods on gene-specific mRNA-protein ratios and possible ways of overcoming these limitations for detection of missing proteins are also discussed.


Assuntos
Cromossomos Humanos Par 18/genética , Proteínas/análise , RNA Mensageiro/análise , Células Hep G2 , Humanos , Fígado/metabolismo , Proteínas/genética , Proteômica/métodos , Transcriptoma
17.
J Proteome Res ; 15(11): 4030-4038, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27527821

RESUMO

A gene-centric approach was applied for a large-scale study of expression products of a single chromosome. Transcriptome profiling of liver tissue and HepG2 cell line was independently performed using two RNA-Seq platforms (SOLiD and Illumina) and also by Droplet Digital PCR (ddPCR) and quantitative RT-PCR. Proteome profiling was performed using shotgun LC-MS/MS as well as selected reaction monitoring with stable isotope-labeled standards (SRM/SIS) for liver tissue and HepG2 cells. On the basis of SRM/SIS measurements, protein copy numbers were estimated for the Chromosome 18 (Chr 18) encoded proteins in the selected types of biological material. These values were compared with expression levels of corresponding mRNA. As a result, we obtained information about 158 and 142 transcripts for HepG2 cell line and liver tissue, respectively. SRM/SIS measurements and shotgun LC-MS/MS allowed us to detect 91 Chr 18-encoded proteins in total, while an intersection between the HepG2 cell line and liver tissue proteomes was ∼66%. In total, there were 16 proteins specifically observed in HepG2 cell line, while 15 proteins were found solely in the liver tissue. Comparison between proteome and transcriptome revealed a poor correlation (R2 ≈ 0.1) between corresponding mRNA and protein expression levels. The SRM and shotgun data sets (obtained during 2015-2016) are available in PASSEL (PASS00697) and ProteomeExchange/PRIDE (PXD004407). All measurements were also uploaded into the in-house Chr 18 Knowledgebase at http://kb18.ru/protein/matrix/416126 .


Assuntos
Cromossomos Humanos Par 18 , Perfilação da Expressão Gênica , Proteoma/análise , Bases de Dados de Proteínas , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Fígado/química , Proteínas/análise , Proteoma/genética , Proteômica/métodos , RNA Mensageiro/análise
18.
J Alzheimers Dis ; 54(2): 809-19, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27567853

RESUMO

Amyloid-ß peptide (Aß) plays a central role in Alzheimer's disease (AD) pathogenesis. Besides extracellular Aß, intraneuronal Aß (iAß) has been suggested to contribute to AD onset and development. Based on reported in vitro Aß-DNA interactions and nuclear localization of iAß, the interference of iAß with the normal DNA expression has recently been proposed as a plausible pathway by which Aß can exert neurotoxicity. Employing the sedimentation assay, thioflavin T fluorescence, and dynamic light scattering we have studied effects of zinc ions on binding of RNA and single- and double-stranded DNA molecules to Aß42 aggregates. It has been found that zinc ions significantly enhance the binding of RNA and DNA molecules to pre-formed ß-sheet rich Aß42 aggregates. Another type of Aß42 aggregates, the zinc-induced amorphous aggregates, was demonstrated to also bind all types of nucleic acids tested. To evaluate the role of the Aß metal-binding domain's histidine residues in Aß-nucleic acid interactions mediated by zinc, Aß16 mutants with substitutions H6R and H6A-H13A and rat Aß16 lacking histidine residue 13 were used. The zinc-induced interaction of Aß16 with DNA was shown to critically depend on histidine residues 6 and 13. However, the inclusion of H6R mutation in Aß42 peptide did not affect DNA binding to Aß42 aggregates. Since oxidative and/or nitrosative stresses implicated in AD pathogenesis are known to release zinc ions from metallothioneins in cytoplasm and cell nuclei, our findings suggest that intracellular zinc can be an important player in iAß-nucleic acid interactions.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Histidina/fisiologia , Ácidos Nucleicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Zinco/metabolismo , Células Hep G2 , Humanos , Ligação Proteica/fisiologia , Zinco/farmacologia
19.
J Struct Biol ; 191(2): 112-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26166326

RESUMO

Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins. This approach involves three steps: finding a potential binding site, designing the recognition and structural parts of the aptamers and evaluating the experimental affinity. Using this approach, a set of 15-mer aptamers for cytochrome P450 51A1 was designed using docking and molecular dynamics simulation. An experimental evaluation of the synthesized aptamers using SPR biosensor showed that these aptamers interact with cytochrome P450 51A1 with Kd values in the range of 10(-6)-10(-7) M.


Assuntos
Aptâmeros de Nucleotídeos/química , Sistema Enzimático do Citocromo P-450/química , Sítios de Ligação , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
20.
Int J Nanomedicine ; 9: 4659-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25336946

RESUMO

Atomic force microscopy (AFM) was applied to carry out direct and label-free detection of gp120 human immunodeficiency virus type 1 envelope glycoprotein as a target protein. This approach was based on the AFM fishing of gp120 from the analyte solution using anti-gp120 aptamers immobilized on the AFM chip to count gp120/aptamer complexes that were formed on the chip surface. The comparison of image contrasts of fished gp120 against the background of immobilized aptamers and anti-gp120 antibodies on the AFM images was conducted. It was shown that an image contrast of the protein/aptamer complexes was two-fold higher than the contrast of the protein/antibody complexes. Mass spectrometry identification provided an additional confirmation of the target protein presence on the AFM chips after biospecific fishing to avoid any artifacts.


Assuntos
Aptâmeros de Nucleotídeos/química , Proteína gp120 do Envelope de HIV/análise , Proteína gp120 do Envelope de HIV/química , Ácidos Nucleicos Imobilizados/química , Espectrometria de Massas/métodos , Microscopia de Força Atômica/métodos , Técnicas de Sonda Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA