RESUMO
Gout is a chronic disease that is caused by an innate immune response to deposited monosodium urate crystals in the setting of hyperuricemia. Here, we provide insights into the molecular mechanism of the poorly understood inflammatory component of gout from a genome-wide association study (GWAS) of 2.6 million people, including 120,295 people with prevalent gout. We detected 377 loci and 410 genetically independent signals (149 previously unreported loci in urate and gout). An additional 65 loci with signals in urate (from a GWAS of 630,117 individuals) but not gout were identified. A prioritization scheme identified candidate genes in the inflammatory process of gout, including genes involved in epigenetic remodeling, cell osmolarity and regulation of NOD-like receptor protein 3 (NLRP3) inflammasome activity. Mendelian randomization analysis provided evidence for a causal role of clonal hematopoiesis of indeterminate potential in gout. Our study identifies candidate genes and molecular processes in the inflammatory pathogenesis of gout suitable for follow-up studies.
RESUMO
Genome-wide association studies (GWASs) have been successful at finding associations between genetic variants and human traits, including the immune-mediated diseases (IMDs). However, the requirement of large sample sizes for discovery poses a challenge for learning about less common diseases, where increasing volunteer numbers might not be feasible. An example of this is myositis (or idiopathic inflammatory myopathies [IIM]s), a group of rare, heterogeneous autoimmune diseases affecting skeletal muscle and other organs, severely impairing life quality. Here, we applied a feature engineering method to borrow information from larger IMD GWASs to find new genetic associations with IIM and its subgroups. Combining this approach with two clustering methods, we found 17 IMDs genetically close to IIM, including some common comorbid conditions, such as systemic sclerosis and Sjögren's syndrome, as well as hypo- and hyperthyroidism. All IIM subtypes were genetically similar within this framework. Next, we colocalized IIM signals that overlapped IMD signals, and found seven potentially novel myositis associations mapped to immune-related genes, including BLK, IRF5/TNPO3, and ITK/HAVCR2, implicating a role for both B and T cells in IIM. This work proposes a new paradigm of genetic discovery in rarer diseases by leveraging information from more common IMD, and can be expanded to other conditions and traits beyond IMD.
Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Miosite , Humanos , Miosite/genética , Miosite/imunologia , Polimorfismo de Nucleotídeo Único , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Doenças do Sistema Imunitário/genéticaRESUMO
OBJECTIVE: Primary antiphospholipid syndrome (PAPS) is a rare autoimmune disease characterized by the presence of antiphospholipid antibodies and the occurrence of thrombotic events and pregnancy complications. Our study aimed to identify novel genetic susceptibility loci associated with PAPS. METHODS: We performed a genome-wide association study comprising 5,485 individuals (482 affected individuals) of European ancestry. Significant and suggestive independent variants from a meta-analysis of approximately 7 million variants were evaluated for functional and biological process enrichment. The genetic risk variability for PAPS in different populations was also assessed. Hierarchical clustering, Mahalanobis distance, and Dirichlet Process Mixtures with uncertainty clustering methods were used to assess genetic similarities between PAPS and other immune-mediated diseases. RESULTS: We revealed genetic associations with PAPS in a regulatory locus within the HLA class II region near HLA-DRA and in STAT1-STAT4 with a genome-wide level of significance; 34 additional suggestive genetic susceptibility loci for PAPS were also identified. The disease risk allele near HLA-DRA is associated with overexpression of HLA-DRB6, HLA-DRB9, HLA-DQA2, and HLA-DQB2 in immune cells, vascular tissue, and nervous tissue. This association is independent of the association between PAPS and HLA-DRB1*1302. Functional analyses highlighted immune-related pathways in PAPS-associated loci. The comparison with other immune-mediated diseases revealed a close genetic relatedness to neuromyelitis optica, systemic sclerosis, and Sjögren syndrome, suggesting co-localized causal variations close to STAT1-STAT4, TNPO3, and BLK. CONCLUSION: This study represents a comprehensive large-scale genetic analysis for PAPS and provides new insights into the genetic basis and pathophysiology of this rare disease.
Assuntos
Síndrome Antifosfolipídica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Feminino , Humanos , Síndrome Antifosfolipídica/genética , Loci Gênicos , Cadeias beta de HLA-DQ/genética , Cadeias alfa de HLA-DR/genética , Polimorfismo de Nucleotídeo Único , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT4/genética , População Branca/genéticaRESUMO
Tissue repair is disturbed in fibrotic diseases like systemic sclerosis (SSc), where the deposition of large amounts of extracellular matrix components such as collagen interferes with organ function. LAIR-1 is an inhibitory collagen receptor highly expressed on tissue immune cells. We questioned whether in SSc, impaired LAIR-1-collagen interaction is contributing to the ongoing inflammation and fibrosis. We found that SSc patients do not have an intrinsic defect in LAIR-1 expression or function. Instead, fibroblasts from healthy controls and SSc patients stimulated by soluble factors that drive inflammation and fibrosis in SSc deposit disorganized collagen products in vitro, which are dysfunctional LAIR-1 ligands. This is dependent of matrix metalloproteinases and platelet-derived growth factor receptor signaling. In support of a non-redundant role of LAIR-1 in the control of fibrosis, we found that LAIR-1-deficient mice have increased skin fibrosis in response to repeated injury and in the bleomycin mouse model for SSc. Thus, LAIR-1 represents an essential control mechanism for tissue repair. In fibrotic disease, excessive collagen degradation may lead to a disturbed feedback loop. The presence of functional LAIR-1 in patients provides a therapeutic opportunity to reactivate this intrinsic negative feedback mechanism in fibrotic diseases.
Assuntos
Colágeno , Modelos Animais de Doenças , Fibroblastos , Fibrose , Camundongos Knockout , Receptores Imunológicos , Escleroderma Sistêmico , Animais , Humanos , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Camundongos , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Bleomicina/efeitos adversos , Pele/patologia , Pele/metabolismo , Pele/imunologia , Transdução de Sinais , Masculino , Feminino , Células CultivadasRESUMO
DC inhibitory receptor (DCIR) is a C-type lectin receptor selectively expressed on myeloid cells, including monocytes, macrophages, DCs, and neutrophils. Its role in immune regulation has been implicated in murine models and human genome-wide association studies, suggesting defective DCIR function associates with increased susceptibility to autoimmune diseases such as rheumatoid arthritis, lupus, and Sjögren's syndrome. However, little is known about the mechanisms underlying DCIR activation to dampen inflammation. Here, we developed anti-DCIR agonistic antibodies that promote phosphorylation on DCIR's immunoreceptor tyrosine-based inhibitory motifs and recruitment of SH2 containing protein tyrosine phosphatase-2 for reducing inflammation. We also explored the inflammation resolution by depleting DCIR+ cells with antibodies. Utilizing a human DCIR-knock-in mouse model, we validated the antiinflammatory properties of the agonistic anti-DCIR antibody in experimental peritonitis and colitis. These findings provide critical evidence for targeting DCIR to develop transformative therapies for inflammatory diseases.
Assuntos
Inflamação , Transdução de Sinais , Animais , Camundongos , Humanos , Transdução de Sinais/imunologia , Inflamação/imunologia , Peritonite/imunologia , Modelos Animais de Doenças , Colite/imunologia , Fosforilação , Camundongos Endogâmicos C57BLRESUMO
Introduction: The innate immune system serves the crucial first line of defense against a wide variety of potential threats, during which the production of pro-inflammatory cytokines IFN-I and TNFα are key. This astonishing power to fight invaders, however, comes at the cost of risking IFN-I-related pathologies, such as observed during autoimmune diseases, during which IFN-I and TNFα response dynamics are dysregulated. Therefore, these response dynamics must be tightly regulated, and precisely matched with the potential threat. This regulation is currently far from understood. Methods: Using droplet-based microfluidics and ODE modeling, we studied the fundamentals of single-cell decision-making upon TLR signaling in human primary immune cells (n = 23). Next, using biologicals used for treating autoimmune diseases [i.e., anti-TNFα, and JAK inhibitors], we unraveled the crosstalk between IFN-I and TNFα signaling dynamics. Finally, we studied primary immune cells isolated from SLE patients (n = 8) to provide insights into SLE pathophysiology. Results: single-cell IFN-I and TNFα response dynamics display remarkable differences, yet both being highly heterogeneous. Blocking TNFα signaling increases the percentage of IFN-I-producing cells, while blocking IFN-I signaling decreases the percentage of TNFα-producing cells. Single-cell decision-making in SLE patients is dysregulated, pointing towards a dysregulated crosstalk between IFN-I and TNFα response dynamics. Discussion: We provide a solid droplet-based microfluidic platform to study inherent immune secretory behaviors, substantiated by ODE modeling, which can challenge the conceptualization within and between different immune signaling systems. These insights will build towards an improved fundamental understanding on single-cell decision-making in health and disease.
Assuntos
Doenças Autoimunes , Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Fator de Necrose Tumoral alfa , Transdução de SinaisRESUMO
Fibrotic diseases, such as idiopathic pulmonary fibrosis (IPF) and systemic scleroderma (SSc), are commonly associated with high morbidity and mortality, thereby representing a significant unmet medical need. Interleukin 11 (IL11)-mediated cell activation has been identified as a central mechanism for promoting fibrosis downstream of TGFß. IL11 signaling has recently been reported to promote fibroblast-to-myofibroblast transition, thus leading to various pro-fibrotic phenotypic changes. We confirmed increased mRNA expression of IL11 and IL11Rα in fibrotic diseases by OMICs approaches and in situ hybridization. However, the vital role of IL11 as a driver for fibrosis was not recapitulated. While induction of IL11 secretion was observed downstream of TGFß signaling in human lung fibroblasts and epithelial cells, the cellular responses induced by IL11 was quantitatively and qualitatively inferior to that of TGFß at the transcriptional and translational levels. IL11 blocking antibodies inhibited IL11Rα-proximal STAT3 activation but failed to block TGFß-induced profibrotic signals. In summary, our results challenge the concept of IL11 blockade as a strategy for providing transformative treatment for fibrosis.
Assuntos
Interleucina-11 , Fator de Crescimento Transformador beta , Humanos , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Fibrose , Miofibroblastos/metabolismoRESUMO
Adalimumab but neither etanercept nor certolizumab-pegol has been reported to induce a wound-healing profile in vitro by regulating macrophage differentiation and matrix metalloproteinase expression, which may underlie the differences in efficacy between various TNF-α inhibitors in impaired wound healing in patients with hidradenitis suppurativa, a chronic inflammatory skin disease. To examine and compare the efficacy of various TNF inhibitors in cutaneous wound healing in vivo, a human TNF knock-in Leprdb/db mouse model was established to model the impaired cutaneous wound healing as seen in hidradenitis suppurativa. The vehicle group exhibited severe impairments in cutaneous wound healing. In contrast, adalimumab significantly accelerated healing, confirmed by both histologic assessment and a unique healing transcriptional profile. Moreover, adalimumab and infliximab showed similar levels of efficacy, but golimumab was less effective, along with etanercept and certolizumab-pegol. In line with histologic assessments, proteomics analyses from healing wounds exposed to various TNF inhibitors revealed distinct and differential wound-healing signatures that may underlie the differential efficacy of these inhibitors in accelerating cutaneous wound healing. Taken together, these data revealed that TNF inhibitors exhibited differential levels of efficacy in accelerating cutaneous wound healing in the impaired wound-healing model in vivo.
RESUMO
Central B cell tolerance is believed to be regulated by B cell receptor signaling induced by the recognition of self-antigens in immature B cells. Using humanized mice with defective MyD88, TLR7, or TLR9 expression, we demonstrate that TLR9/MYD88 are required for central B cell tolerance and the removal of developing autoreactive clones. We also show that CXCL4, a chemokine involved in systemic sclerosis (SSc), abrogates TLR9 function in B cells by sequestering TLR9 ligands away from the endosomal compartments where this receptor resides. The in vivo production of CXCL4 thereby impedes both TLR9 responses in B cells and the establishment of central B cell tolerance. We conclude that TLR9 plays an essential early tolerogenic function required for the establishment of central B cell tolerance and that correcting defective TLR9 function in B cells from SSc patients may represent a novel therapeutic strategy to restore B cell tolerance.
Assuntos
Fator Plaquetário 4 , Escleroderma Sistêmico , Receptor Toll-Like 9 , Animais , Humanos , Camundongos , Linfócitos B , Ligantes , Fator 88 de Diferenciação Mieloide/metabolismo , Fator Plaquetário 4/metabolismo , Escleroderma Sistêmico/metabolismo , Receptor 7 Toll-Like , Receptor Toll-Like 9/metabolismoRESUMO
BACKGROUND: Psoriasis is an immune-mediated inflammatory skin disease. Psoriasis severity evaluation is important for clinicians in the assessment of disease severity and subsequent clinical decision making. However, no objective biomarker is available for accurately evaluating disease severity in psoriasis. OBJECTIVE: To define and compare biomarkers of disease severity and progression in psoriatic skin. METHODS: We performed proteome profiling to study the proteins circulating in the serum from patients with psoriasis, psoriatic arthritis and ankylosing spondylitis, and transcriptome sequencing to investigate the gene expression in skin from the same cohort. We then used machine learning approaches to evaluate different biomarker candidates across several independent cohorts. In order to reveal the cell-type specificity of different biomarkers, we also analyzed a single-cell dataset of skin samples. In-situ staining was applied for the validation of biomarker expression. RESULTS: We identified that the peptidase inhibitor 3 (PI3) was significantly correlated with the corresponding local skin gene expression, and was associated with disease severity. We applied machine learning methods to confirm that PI3 was an effective psoriasis classifier, Finally, we validated PI3 as psoriasis biomarker using in-situ staining and public datasets. Single-cell data and in-situ staining indicated that PI3 was specifically highly expressed in keratinocytes from psoriatic lesions. CONCLUSION: Our results suggest that PI3 may be a psoriasis-specific biomarker for disease severity and hyper-keratinization.
RESUMO
OBJECTIVES: To assess to what extent leflunomide (LEF) and hydroxychloroquine (HCQ) therapy in patients with primary Sjögren's syndrome (RepurpSS-I) targets type I IFN-associated responses and to study the potential of several interferon associated RNA-based and protein-based biomarkers to predict and monitor treatment. METHODS: In 21 patients treated with LEF/HCQ and 8 patients treated with placebo, blood was drawn at baseline, 8, 16 and 24 weeks. IFN-signatures based on RNA expression of five IFN-associated genes were quantified in circulating mononuclear cells and in whole blood. MxA protein levels were measured in whole blood, and protein levels of CXCL10 and Galectin-9 were quantified in serum. Differences between responders and non-responders were assessed and receiver operating characteristic analysis was used to determine the capacity of baseline expression and early changes (after 8 weeks of treatment) in biomarkers to predict treatment response at the clinical endpoint. RESULTS: IFN-signatures in peripheral blood mononuclear cell and whole blood decreased after 24 weeks of LEF/HCQ treatment, however, changes in IFN signatures only poorly correlated with changes in disease activity. In contrast to baseline IFN signatures, baseline protein concentrations of galectin-9 and decreases in circulating MxA and Galectin-9 were robustly associated with clinical response. Early changes in serum Galectin-9 best predicted clinical response at 24 weeks (area under the curve 0.90). CONCLUSIONS: LEF/HCQ combination therapy targets type-I IFN-associated proteins that are associated with strongly decreased B cell hyperactivity and disease activity. IFN-associated Galectin-9 is a promising biomarker for treatment prediction and monitoring in pSS patients treated with LEF/HCQ.
Assuntos
Interferon Tipo I , Síndrome de Sjogren , Humanos , Biomarcadores , Hidroxicloroquina/uso terapêutico , Interferon Tipo I/metabolismo , Leflunomida/uso terapêutico , Leucócitos Mononucleares/metabolismo , Proteínas , RNA , Síndrome de Sjogren/diagnóstico , Síndrome de Sjogren/tratamento farmacológicoRESUMO
Upon antigen-specific T cell receptor (TCR) engagement, human CD4+ T cells proliferate and differentiate, a process associated with rapid transcriptional changes and metabolic reprogramming. Here, we show that the generation of extramitochondrial pyruvate is an important step for acetyl-CoA production and subsequent H3K27ac-mediated remodeling of histone acetylation. Histone modification, transcriptomic, and carbon tracing analyses of pyruvate dehydrogenase (PDH)-deficient T cells show PDH-dependent acetyl-CoA generation as a rate-limiting step during T activation. Furthermore, T cell activation results in the nuclear translocation of PDH and its association with both the p300 acetyltransferase and histone H3K27ac. These data support the tight integration of metabolic and histone-modifying enzymes, allowing metabolic reprogramming to fuel CD4+ T cell activation. Targeting this pathway may provide a therapeutic approach to specifically regulate antigen-driven T cell activation.
Assuntos
Montagem e Desmontagem da Cromatina , Histonas , Humanos , Histonas/metabolismo , Acetilcoenzima A/metabolismo , Linfócitos T CD4-Positivos/metabolismoRESUMO
Background: Type I interferons (IFNs) promote the expansion of subsets of CD1c+ conventional dendritic cells (CD1c+ DCs), but the molecular basis of CD1c+ DCs involvement in conditions not associated without elevated type I IFNs remains unclear. Methods: We analyzed CD1c+ DCs from two cohorts of non-infectious uveitis patients and healthy donors using RNA-sequencing followed by high-dimensional flow cytometry to characterize the CD1c+ DC populations. Results: We report that the CD1c+ DCs pool from patients with non-infectious uveitis is skewed toward a gene module with the chemokine receptor CX3CR1 as the key hub gene. We confirmed these results in an independent case-control cohort and show that the disease-associated gene module is not mediated by type I IFNs. An analysis of peripheral blood using flow cytometry revealed that CX3CR1+ DC3s were diminished, whereas CX3CR1- DC3s were not. Stimulated CX3CR1+ DC3s secrete high levels of inflammatory cytokines, including TNF-alpha, and CX3CR1+ DC3 like cells can be detected in inflamed eyes of patients. Conclusions: These results show that CX3CR1+ DC3s are implicated in non-infectious uveitis and can secrete proinflammatory mediators implicated in its pathophysiology. Funding: The presented work is supported by UitZicht (project number #2014-4, #2019-10, and #2021-4). The funders had no role in the design, execution, interpretation, or writing of the study.
Assuntos
Transcriptoma , Uveíte , Humanos , Antígenos CD1/análise , Citocinas , Células Dendríticas/fisiologia , Uveíte/genética , Citometria de Fluxo , Receptor 1 de Quimiocina CX3C/genéticaRESUMO
OBJECTIVE: The idiopathic inflammatory myopathies (IIMs) are heterogeneous diseases thought to be initiated by immune activation in genetically predisposed individuals. We imputed variants from the ImmunoChip array using a large reference panel to fine-map associations and identify novel associations in IIM. METHODS: We analyzed 2,565 Caucasian IIM patient samples collected through the Myositis Genetics Consortium (MYOGEN) and 10,260 ethnically matched control samples. We imputed 1,648,116 variants from the ImmunoChip array using the Haplotype Reference Consortium panel and conducted association analysis on IIM and clinical and serologic subgroups. RESULTS: The HLA locus was consistently the most significantly associated region. Four non-HLA regions reached genome-wide significance, SDK2 and LINC00924 (both novel) and STAT4 in the whole IIM cohort, with evidence of independent variants in STAT4, and NAB1 in the polymyositis (PM) subgroup. We also found suggestive evidence of association with loci previously associated with other autoimmune rheumatic diseases (TEC and LTBR). We identified more significant associations than those previously reported in IIM for STAT4 and DGKQ in the total cohort, for NAB1 and FAM167A-BLK loci in PM, and for CCR5 in inclusion body myositis. We found enrichment of variants among DNase I hypersensitivity sites and histone marks associated with active transcription within blood cells. CONCLUSION: We found novel and strong associations in IIM and PM and localized signals to single genes and immune cell types.
Assuntos
Doenças Autoimunes , Miosite , Polimiosite , Humanos , Miosite/genética , Doenças Autoimunes/genética , Predisposição Genética para Doença , HaplótiposRESUMO
OBJECTIVE: To assess the efficacy and safety of ABBV-3373, a novel antibody-drug conjugate (ADC) composed of the anti-tumor necrosis factor (anti-TNF) monoclonal antibody adalimumab linked to a glucocorticoid receptor modulator (GRM), compared to adalimumab, in patients with rheumatoid arthritis (RA). METHODS: In this randomized, double-blind, active-controlled, proof-of-concept trial (ClinicalTrials.gov identifier: NCT03823391), adults with moderate-to-severe RA receiving background methotrexate were administered intravenously (IV) ABBV-3373 100 mg every other week for 12 weeks, followed by placebo for 12 weeks, or subcutaneous adalimumab 80 mg every other week for 24 weeks. The primary end point was change from baseline in the Disease Activity Score in 28 joints using C-reactive protein (DAS28-CRP) at week 12, with 2 prespecified primary comparisons of ABBV-3373 versus historical adalimumab (80 mg every other week or equivalent dose) and versus combined in-trial/historical adalimumab. Secondary end points included change from baseline in the Clinical Disease Activity Index, Simplified Disease Activity Index, and DAS28 using erythrocyte sedimentation rate, as well as the proportion of patients achieving a DAS28-CRP of ≤3.2 and the American College of Rheumatology 50% improvement criteria. RESULTS: Forty-eight patients were randomized to receive either ABBV-3373 (n = 31) or adalimumab (n = 17). At week 12, ABBV-3373 demonstrated a reduction in DAS28-CRP compared to historical adalimumab (-2.65 versus -2.13; P = 0.022) and compared to combined in-trial/historical adalimumab (-2.65 versus -2.29; probability 89.9%), with numerically greater improvement than in-trial adalimumab (-2.51). For secondary end points, greater efficacy was observed with ABBV-3373 compared to historical adalimumab; ABBV-3373 was predicted with 79.3-99.5% probability to be more effective than adalimumab based on combined in-trial/historical adalimumab data. Of the ABBV-3373-treated patients who achieved DAS28-CRP ≤3.2 at week 12, 70.6% maintained this response at week 24 despite switching to placebo. Four serious adverse events (SAEs) were reported with ABBV-3373 (noncardiac chest pain, pneumonia, upper respiratory tract infection, and anaphylactic shock) and 2 SAEs with adalimumab (breast abscess and bronchitis). After increasing the duration of IV ABBV-3373 administration from 3 minutes to 15-30 minutes, no similar events of anaphylactic shock were reported. CONCLUSION: Data from this proof-of-concept trial support the continued development of a TNF-GRM ADC for the treatment of RA, with the potential to achieve superior outcomes compared to currently available therapies.
Assuntos
Anafilaxia , Antirreumáticos , Artrite Reumatoide , Humanos , Adulto , Metotrexato/uso terapêutico , Adalimumab/uso terapêutico , Antirreumáticos/efeitos adversos , Receptores de Glucocorticoides , Preparações Farmacêuticas , Glucocorticoides/uso terapêutico , Anafilaxia/induzido quimicamente , Anafilaxia/tratamento farmacológico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Anticorpos Monoclonais Humanizados , Artrite Reumatoide/metabolismo , Receptores do Fator de Necrose Tumoral , Método Duplo-Cego , Necrose/induzido quimicamente , Resultado do TratamentoRESUMO
OBJECTIVE: This study was undertaken to identify key disease pathways driving conventional dendritic cell (cDC) alterations in systemic sclerosis (SSc). METHODS: Transcriptomic profiling was performed on peripheral blood CD1c+ cDCs (cDC2s) isolated from 12 healthy donors and 48 patients with SSc, including all major disease subtypes. We performed differential expression analysis for the different SSc subtypes and healthy donors to uncover genes dysregulated in SSc. To identify biologically relevant pathways, we built a gene coexpression network using weighted gene correlation network analysis. We validated the role of key transcriptional regulators using chromatin immunoprecipitation (ChIP) sequencing and in vitro functional assays. RESULTS: We identified 17 modules of coexpressed genes in cDCs that correlated with SSc subtypes and key clinical traits, including autoantibodies, skin score, and occurrence of interstitial lung disease. A module of immunoregulatory genes was markedly down-regulated in patients with the diffuse SSc subtype characterized by severe fibrosis. Transcriptional regulatory network analysis performed on this module predicted nuclear receptor 4A (NR4A) subfamily genes (NR4A1, NR4A2, NR4A3) as the key transcriptional regulators of inflammation. Indeed, ChIP-sequencing analysis indicated that these NR4A members target numerous differentially expressed genes in SSc cDC2s. Inclusion of NR4A receptor agonists in culture-based experiments provided functional proof that dysregulation of NR4As affects cytokine production by cDC2s and modulates downstream T cell activation. CONCLUSION: NR4A1, NR4A2, and NR4A3 are important regulators of immunosuppressive and fibrosis-associated pathways in SSc cDCs. Thus, the NR4A family represents novel potential targets to restore cDC homeostasis in SSc.
Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Escleroderma Sistêmico , Humanos , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Regulação da Expressão Gênica , Expressão Gênica , Escleroderma Sistêmico/genética , Fibrose , Glicoproteínas/metabolismo , Antígenos CD1/genéticaRESUMO
OBJECTIVE: Class 3 semaphorins are reduced in the synovial tissue of RA patients and these proteins are involved in the pathogenesis of the disease. The aim of this study was to identify the transcription factors involved in the expression of class 3 semaphorins in the synovium of RA patients. METHODS: Protein and mRNA expression in synovial tissue from RA and individuals at risk (IAR) patients, human umbilical vein endothelial cells (HUVEC) and RA fibroblast-like synoviocytes (FLS) was determined by ELISA, immunoblotting and quantitative PCR. TCF-3, EBF-1 and HOXA5 expression was knocked down using siRNA. Cell viability, migration and invasion were determined using MTT, calcein, wound closure and invasion assays, respectively. RESULTS: mRNA expression of all class 3 semaphorins was significantly lower in the synovium of RA compared with IAR patients. In silico analysis suggested TCF-3, EBF-1 and HOXA5 as transcription factors involved in the expression of these semaphorins. TCF-3, EBF-1 and HOXA5 silencing significantly reduced the expression of several class 3 semaphorin members in FLS and HUVEC. Importantly, HOXA5 expression was significantly reduced in the synovium of RA compared with IAR patients and was negatively correlated with clinical disease parameters. Additionally, TNF-α down-regulated the HOXA5 expression in FLS and HUVEC. Finally, HOXA5 silencing enhanced the migratory and invasive capacities of FLS and the viability of HUVEC. CONCLUSION: HOXA5 expression is reduced during the progression of RA and could be a novel therapeutic strategy for modulating the hyperplasia of the synovium, through the regulation of class 3 semaphorins expression.
Assuntos
Artrite Reumatoide , Semaforinas , Sinoviócitos , Humanos , Semaforinas/genética , Células Cultivadas , Membrana Sinovial/metabolismo , Artrite Reumatoide/tratamento farmacológico , Sinoviócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Fatores de Transcrição/metabolismo , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Proliferação de Células , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/uso terapêuticoRESUMO
OBJECTIVE: Type 2 conventional dendritic cells (cDC2s) are key orchestrators of inflammatory responses, linking innate and adaptative immunity. Here we explored the regulation of immunological pathways in cDC2s from patients with primary Sjögren's syndrome (pSS). METHODS: RNA sequencing of circulating cDC2s from patients with pSS, patients with non-Sjögren's sicca and healthy controls (HCs) was exploited to establish transcriptional signatures. Phenotypical and functional validation was performed in independent cohorts. RESULTS: Transcriptome of cDC2s from patients with pSS revealed alterations in type I interferon (IFN), toll-like receptor (TLR), antigen processing and presentation pathways. Phenotypical validation showed increased CX3CR1 expression and decreased integrin beta-2 and plexin-B2 on pSS cDC2s. Functional validation confirmed impaired capacity of pSS cDC2s to degrade antigens and increased antigen uptake, including self-antigens derived from salivary gland epithelial cells. These changes in antigen uptake and degradation were linked to anti-SSA/Ro (SSA) autoantibodies and the presence of type I IFNs. In line with this, in vitro IFN-α priming enhanced the uptake of antigens by HC cDC2s, reflecting the pSS cDC2 profile. Finally, pSS cDC2s compared with HC cDC2s increased the proliferation and the expression of CXCR3 and CXCR5 on proliferating CD4+ T cells. CONCLUSIONS: pSS cDC2s are transcriptionally altered, and the aberrant antigen uptake and processing, including (auto-)antigens, together with increased proliferation of tissue-homing CD4+ T cells, suggest altered antigen presentation by pSS cDC2s. These functional alterations were strongly linked to anti-SSA positivity and the presence of type I IFNs. Thus, we demonstrate novel molecular and functional pieces of evidence for the role of cDC2s in orchestrating immune response in pSS, which may yield novel avenues for treatment.
Assuntos
Interferon Tipo I , Síndrome de Sjogren , Humanos , Transcriptoma , Autoimunidade , Interferon-alfa , Células Epiteliais/metabolismo , Interferon Tipo I/genéticaRESUMO
Objectives: Primary antiphospholipid syndrome (PAPS) is a rare autoimmune disease characterized by the presence of antiphospholipid antibodies and the occurrence of thrombotic events and pregnancy complications. Our study aimed to identify novel genetic susceptibility loci associated with PAPS. Methods: We performed a genome-wide association study comprising 5,485 individuals (482 affected individuals) of European ancestry. Significant and suggestive independent variants from a meta-analysis of approximately 7 million variants were evaluated for functional and biological process enrichment. The genetic risk variability for PAPS in different populations was also assessed. Hierarchical clustering, Mahalanobis distance, and Dirichlet Process Mixtures with uncertainty clustering methods were used to assess genetic similarities between PAPS and other immune-mediated diseases. Results: We revealed genetic associations with PAPS in a regulatory locus within the HLA class II region near HLA-DRA and in STAT4 with a genome-wide level of significance. 34 additional suggestive genetic susceptibility loci for PAPS were also identified. The disease risk allele in the HLA class II locus is associated with overexpression of HLA-DRB6 , HLA-DRB9 , HLA-DPB2 , HLA-DQA2 and HLA-DQB2 , and is independent of the association between PAPS and HLA-DRB1*1302 . Functional analyses highlighted immune and nervous system related pathways in PAPS-associated loci. The comparison with other immune-mediated diseases revealed a close genetic relatedness to neuromyelitis optica, systemic sclerosis, and Sjögren's syndrome, suggesting colocalized causal variations close to STAT4 , TNPO3 , and BLK . Conclusions: This study represents a comprehensive large-scale genetic analysis for PAPS and provides new insights into the genetic basis and pathophysiology of this rare disease.
RESUMO
OBJECTIVES: The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. METHODS: We collected the skin tissue biopsies and swabs in both lesional and non-lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed high-throughput RNA-sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. RESULTS: We found that lesional and non-lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using co-expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a 'core' set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. CONCLUSIONS: We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin.