Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Med Phys ; 51(5): 3665-3676, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38194496

RESUMO

BACKGROUND: Our previous work introduced and evaluated a standard for surface absorbed dose rate per unit radioactivity to water from unsealed alpha-emitting radionuclides used in targeted radionuclide therapy (TRT). An overall uncertainty over 4.0% at k = 1 was reported for the absorbed dose to air measurements, which was partially attributed to the rotational alignment uncertainty in the geometrical setup. PURPOSE: A printed circuit board (PCB) with a segmented guard was constructed to align the extrapolation chamber (EC) and the source plates using a differential capacitance technique. The PCB EC aimed to enhance the repeatability of the ionization current measurements. The PCB EC was evaluated using a thin film 210Po source. The measured absorbed dose to air cavity was compared with the Monte Carlo (MC) calculations. Using the extrapolation method, the surface absorbed dose rate to water was calculated. METHODS: The PCB EC was constructed with a 4.50 mm diameter collector surrounded by four sectors and a guard electrode. The sectors were isolated for rotational alignment and later connected to the guard for ionization current measurements. A bridge circuit measured differential capacitance between opposing sectors, and a hexapod motion stage rotated the source substrate to minimize the differential capacitance. The EC was evaluated using a 210Po source with a 3.20 mm diameter and 1.253 µ $\mu $ Ci radioactivity. MC simulations were performed to calculate the k p o i n t ${k}_{point}$ , k b a c k s c a t t e r ${k}_{backscatter}$ , and k d i v ${k}_{div}$ correction factors. Ionization current measurements were performed for air gaps in the 0.3-0.525 mm range and surface absorbed dose rate to water was calculated. RESULTS: Rotational offsets of up to 3.0° were found and the current repeatability was found to increase with the absorbed dose to air uncertainty calculated to be ∼2.0%. Using the capacitance method, the effective EC diameter was measured to be 4.53 mm. The recombination, polarity, and electrometer corrections were reported to be within 1.00% across all measurement trials. The MC-calculated correction factors were calculated to be much larger than the recombination and polarity correction factors. The average k p o i n t ${k}_{point}$ , k b a c k s c a t t e r ${k}_{backscatter}$ , and k d i v ${k}_{div}$ corrections were calculated to be 1.063, 0.9402, and 2.136, respectively. The MC-calculated absorbed dose to air was found to overestimate the absorbed dose by over 4.00% when compared with the measured absorbed dose to air. The surface absorbed dose rate to water was calculated to be 2.304 × 10 - 6 $2.304 \times {10}^{ - 6}$ Gy/s/Bq with an overall uncertainty of 4.07%. CONCLUSIONS: The constructed PCB EC was deemed suitable as an absorbed dose standard. A repeatable rotational alignment was achieved using the differential capacitance technique. The metal electrodes on the PCB made a difference of < 1.00% on the backscatter correction when compared to the EC comprised of polystyrene-equivalent collector. A 20% difference in the surface absorbed dose rate to water was found between the two ECs, which is attributed to the cavity diameter differences leading to different magnitudes of dose fall-off along the lateral direction.


Assuntos
Método de Monte Carlo , Radiometria , Água , Água/química , Radiometria/instrumentação , Partículas alfa , Doses de Radiação , Padrões de Referência , Radioisótopos
2.
J Appl Clin Med Phys ; 25(1): e14229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032123

RESUMO

BACKGROUND: Pulsed reduced dose rate (PRDR) is an emerging radiotherapy technique for recurrent diseases. It is pertinent that the linac beam characteristics are evaluated for PRDR dose rates and a suitable dosimeter is employed for IMRT QA. PURPOSE: This study sought to investigate the pulse characteristics of a 6 MV photon beam during PRDR irradiations on a commercial linac. The feasibility of using EBT3 radiochromic film for use in IMRT QA was also investigated by comparing its response to a commercial diode array phantom. METHODS: A plastic scintillator detector was employed to measure the photon pulse characteristics across nominal repetition rates (NRRs) in the 5-600 MU/min range. Film was irradiated with dose rates in the 0.033-4 Gy/min range to study the dose rate dependence. Five clinical PRDR treatment plans were selected for IMRT QA with the Delta4 phantom and EBT3 film sheets. The planned and measured dose were compared using gamma analysis with a criterion of 3%/3 mm. EBT3 film QA was performed using a cumulative technique and a weighting factor technique. RESULTS: Negligible differences were observed in the pulse width and height data between the investigated NRRs. The pulse width was measured to be 3.15 ± 0.01 µ s $\mu s$ and the PRF was calculated to be 3-357 Hz for the 5-600 MU/min NRRs. The EBT3 film was found to be dose rate independent within 3%. The gamma pass rates (GPRs) were above 99% and 90% for the Delta4 phantom and the EBT3 film using the cumulative QA method, respectively. GPRs as low as 80% were noted for the weighting factor EBT3 QA method. CONCLUSIONS: Altering the NRRs changes the mean dose rate while the instantaneous dose rate remains constant. The EBT3 film was found to be suitable for PRDR dosimetry and IMRT QA with minimal dose rate dependence.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosimetria Fotográfica/métodos , Radiometria , Raios gama , Fótons
3.
Phys Med Biol ; 68(15)2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37379858

RESUMO

Objective.In photon counting detectors (PCDs), electric pulses induced by two or more x-ray photons can pile up and result in count losses when their temporal separation is less than the detector dead time. The correction of pulse pile-up-induced count loss is particularly difficult for paralyzable PCDs since a given value of recorded counts can correspond to two different values of true photon interactions. In contrast, charge (energy) integrating detectors work by integrating collected electric charge induced by x-rays over time and do not suffer from pile-up losses. This work introduces an inexpensive readout circuit element to the circuits of PCDs to simultaneously collect time-integrated charge to correct pile-up-induced count losses.Approach.Prototype electronics were constructed to collect time-integrated charges simultaneously with photon counts. A splitter was used to feed the electric signal in parallel to both a digital counter and a charge integrator. After recording PCD counts and integrating collected charge, a lookup table can be generated to map raw counts in the total- and high-energy bins and total charge to estimate pile-up-free true counts. Proof-of-concept imaging experiments were performed with a CdTe-based PCD array to test this method.Main results.The proposed electronics successfully recorded photon counts and time-integrated charge simultaneously, and whereas photon counts exhibited paralyzable pulse pile-up, time-integrated charge using the same electric signal as the counts measurement was linear with x-ray flux. With the proposed correction, paralyzable PCD counts became linear with input flux for both total- and high-energy bins. At high flux levels, uncorrected post-log measurements of PMMA objects severely overestimated radiological path lengths for both energy bins. After the proposed correction, the non-monotonic measurements again became linear with flux and accurately represented the true radiological path lengths. No impact on the spatial resolution was observed after the proposed correction in images of a line-pair test pattern.Significance.Time-integrated charge can be used to correct for pulse pile-up in paralyzable PCDs where analytical solutions may be difficult to use, and integrated charge can be collected simultaneously with counts using inexpensive electronics.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Fótons , Telúrio
4.
J Vasc Interv Radiol ; 32(3): 439-446, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33414069

RESUMO

PURPOSE: To determine physician radiation exposure when using partial-angle computed tomography (CT) fluoroscopy (PACT) vs conventional full-rotation CT and whether there is an optimal tube/detector position at which physician dose is minimized. MATERIALS AND METHODS: Physician radiation dose (entrance air kerma) was measured for full-rotation CT (360°) and PACT (240°) at all tube/detector positions using a human-mimicking phantom placed in a 64-channel multidetector CT. Parameters included 120 kV, 20- and 40-mm collimation, and 100 mA. The mean, standard deviation, and increase/decrease in physician dose compared with a full-rotation scan were reported. RESULTS: Physician radiation exposure during CT fluoroscopy with PACT was highly dependent on the position of the tube/detector during scanning. The lowest PACT physician dose was when the physician was on the detector side (center view angle 116°; -35% decreased dose vs full-angle CT). The highest PACT physician dose was with the physician on the tube side (center view angle 298°; +34% increased dose vs full-angle CT), all doses P <.05 vs full-rotation CT. CONCLUSIONS: Partial-angle CT has the potential to both significantly increase or decrease physician radiation dose during CT fluoroscopy-guided procedures. The detector/tube position has a profound effect on physician dose. The lowest dose during PACT was achieved when the physician was located on the detector side (ie, distant from the tube). This data could be used to optimize CT fluoroscopy parameters to reduce physician radiation exposure for PACT-capable scanners.


Assuntos
Tomografia Computadorizada Multidetectores , Exposição Ocupacional , Doses de Radiação , Exposição à Radiação , Radiografia Intervencionista , Radiologistas , Fluoroscopia , Humanos , Tomografia Computadorizada Multidetectores/efeitos adversos , Tomografia Computadorizada Multidetectores/instrumentação , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/prevenção & controle , Saúde Ocupacional , Imagens de Fantasmas , Exposição à Radiação/efeitos adversos , Exposição à Radiação/prevenção & controle , Radiografia Intervencionista/efeitos adversos , Radiografia Intervencionista/instrumentação , Medição de Risco , Fatores de Risco , Tomógrafos Computadorizados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA