RESUMO
Free movement of production factors in the enlarged EU has led to immigration flows from East to West and from South to North with a significant impact on EU labor markets. Fiscal federalism also determined large immigration flows into EU area and affected unemployment rate in the EU countries. The aim of this paper is to investigate the impact of factors such as number of immigrants, tax on profits, social contributions, economic growth and population growth on unemployment rates in EU area using a panel quantile regression and an PMG-ARDL approach as robustness test during 1991-2020. The results show a positive association between population growth and unemployment rate, whereas the remaining exogenous factors are negatively associated with unemployment rate. Still, social contributions are statistically significant only for upper quantiles. The overall impact of social contribution on unemployment rate is positive as per PMG-ARDL estimations. We have also demonstrated that the immigrant flows impact on unemployment rate is very weak. The factors that are exerting the most significance influence on unemployment rate, are economic and population growth, followed by tax on profits. Findings support policy recommendation in EU area in terms of fiscal policy.
RESUMO
Electrical discharge machining with solid electrodes represents an efficient solution to generate blind cavities with complex geometry. Vegetable oils represent an alternative to conventional dielectrics, which are considered harmful for the environment and human health. This study tested the feasibility of two widely used vegetable oils, sunflower and soybean, under intense machining of three alloys with application in aeronautic industry, aiming for high process productivity and a good surface quality. The results have revealed that vegetable oils are capable to ensure an improvement of the material removal rates that can reach up to 55.15 % compared to mineral oil. Also, the vegetable dielectrics allowed an improvement of surface quality for non-ferrous alloys, up to a maximum of 19.70 %, whereas for the stainless steel, the mineral oil has provided a better surface finish.
RESUMO
Candida auris is a newly emerging yeast, which is raising public health concerns due to its outbreak potential, lack of protocols for decontamination and isolation of patients or contacts, increased resistance to common antifungals, and associated high mortality. This research aimed to describe the challenges related to identifying the outbreak, limiting further contamination, and treating affected individuals. We retrospectively analyzed all cases of C. auris detected between October 2022 and August 2023, but our investigation focused on a three-month-long outbreak in the department of cardio-vascular surgery and the related intensive care unit. Along with isolated cases in different wards, we identified 13 patients who became infected or colonized in the same area and time, even though the epidemiological link could only be traced in 10 patients, according to the epidemiologic investigation. In conclusion, our study emphasizes the substantial challenge encountered in clinical practice when attempting to diagnose and limit the spread of an outbreak. Therefore, it is crucial to promptly apply contact precaution measures and appropriate environmental cleaning, from the first positive case detected.
RESUMO
Global travelling increases every year and according to a report released during the COVID-19 pandemic by the UN World Tourism Organization, international travel doubled in 2022, compared to levels in 2021. his fact led also to travel-imported cases of arboviral infections and physicians are often confronted with tropical diseases, such as dengue or chikungunya. Since there is are no pathognomonic cues for these tropical illnesses, early diagnosis is still a big challenge and it depends on many factors, such as exposure risk factors, the epidemiological context, the incubation period, and the wide spectrum of differential diagnoses, including cosmopolitan or exotic infections. Since the clinical presentation of dengue is not typical and there are other febrile illnesses similar to arboviral diseases, misdiagnosis is common even among experienced doctors. Differential diagnosis needs up to date knowledge considering the short viraemic period, the antibody cross-reactivity, and the traps in recognising the nonspecific symptom picture. We present two cases of Dengue diagnosed in Romania which were initially clinically misconstrued, despite the characteristic symptom picture. The main purpose is to increase the level of awareness and to underline the difficulties that clinicians face in recognizing travel-related imported dengue virus disease.
RESUMO
Magnetic structures exhibiting large magnetic moments are sought after in theranostic approaches that combine magnetic hyperthermia treatment (MH) and diagnostic magnetic resonance imaging in oncology, since they offer an enhanced magnetic response to an external magnetic field. We report on the synthesized production of a core-shell magnetic structure using two types of magnetite nanoclusters (MNC) based on a magnetite core and polymer shell. This was achieved through an in situ solvothermal process, using, for the first time, 3,4-dihydroxybenzhydrazide (DHBH) and poly[3,4-dihydroxybenzhydrazide] (PDHBH) as stabilizers. Transmission electron microscopy (TEM) analysis showed the formation of spherical MNC, X-ray photoelectronic spectroscopy (XPS) and Fourier transformed infrared (FT-IR) analysis proved the existence of the polymer shell. Magnetization measurement showed saturation magnetization values of 50 emu/g for PDHBH@MNC and 60 emu/g for DHBH@MNC with very low coercive field and remanence, indicating that the MNC are in a superparamagnetic state at room temperature and are thus suitable for biomedical applications. MNCs were investigated in vitro, on human normal (dermal fibroblasts-BJ) and tumor (colon adenocarcinoma-CACO2, and melanoma-A375) cell lines, in view of toxicity, antitumor effectiveness and selectivity upon magnetic hyperthermia. MNCs exhibited good biocompatibility and were internalized by all cell lines (TEM), with minimal ultrastructural changes. By means of flowcytometry apoptosis detection, fluorimetry, spectrophotometry for mitochondrial membrane potential, oxidative stress, ELISA-caspases, and Western blot-p53 pathway, we show that MH efficiently induced apoptosis mostly via the membrane pathway and to a lower extent by the mitochondrial pathway, the latter mainly observed in melanoma. Contrarily, the apoptosis rate was above the toxicity limit in fibroblasts. Due to its coating, PDHBH@MNC showed selective antitumor efficacy and can be further used in theranostics since the PDHBH polymer provides multiple reaction sites for the attachment of therapeutic molecules.
RESUMO
In this paper, we derive an effective model for transport processes in periodically perforated elastic media, taking into account, e.g., cyclic elastic deformations as they occur in lung tissue due to respiratory movement. The underlying microscopic problem couples the deformation of the domain with a diffusion process within a mixed Lagrangian/Eulerian formulation. After a transformation of the diffusion problem onto the fixed domain, we use the formal method of two-scale asymptotic expansion to derive the upscaled model, which is nonlinearly coupled through effective coefficients. The effective model is implemented and validated using an application-inspired model problem. Numerical solutions for both, cell problems and macroscopic equations, are investigated and interpreted. We use simulations to qualitatively determine the effect of the deformation on the transport process.
RESUMO
Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.
Assuntos
Drosophila , Saúde Pública , Animais , PesquisaRESUMO
We aimed to evaluate the diagnostic agreement between radiofrequency (RF) intravascular ultrasound (IVUS) and optical coherence tomography (OCT) for thin-cap fibroatheroma (TCFA) in non-infarct-related coronary arteries (non-IRA) in patients with ST-segment elevation myocardial infarction (STEMI). In the Integrated Biomarker Imaging Study (IBIS-4), 103 STEMI patients underwent OCT and RF-IVUS imaging of non-IRA after successful primary percutaneous coronary intervention and at 13-month follow-up. A coronary lesion was defined as a segment with ≥ 3 consecutive frames (≈1.2 mm) with plaque burden ≥ 40% as assessed by grayscale IVUS. RF-IVUS-derived TCFA was defined as a lesion with > 10% confluent necrotic core abutting to the lumen in > 10% of the circumference. OCT-TCFA was defined by a minimum cap thickness < 65 µm. The two modalities were matched based on anatomical landmarks using a dedicated matching software. Using grayscale IVUS, we identified 276 lesions at baseline (N = 146) and follow-up (N = 130). Using RF-IVUS, 208 lesions (75.4%) were classified as TCFA. Among them, OCT identified 14 (6.7%) TCFA, 60 (28.8%) thick-cap fibroatheroma (ThCFA), and 134 (64.4%) non-fibroatheroma. All OCT-TCFA (n = 14) were confirmed as RF-TCFA. The concordance rate between RF-IVUS and OCT for TCFA diagnosis was 29.7%. The reasons for discordance were: OCT-ThCFA (25.8%); OCT-fibrous plaque (34.0%); attenuation due to calcium (23.2%); attenuation due to macrophage (10.3%); no significant attenuation (6.7%). There was a notable discordance in the diagnostic assessment of TCFA between RF-IVUS and OCT. The majority of RF-derived TCFA were not categorized as fibroatheroma using OCT, while all OCT-TCFA were classified as TCFA by RF-IVUS.ClinicalTrials.gov Identifier NCT00962416.
Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Placa Aterosclerótica , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/terapia , Vasos Coronários/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , Tomografia de Coerência Óptica , Ultrassonografia de IntervençãoRESUMO
Neurofibromatosis Type II (NF2) is an autosomal dominant cancer predisposition syndrome in which germline haploinsufficiency at the NF2 gene confers a greatly increased propensity for tumor development arising from tissues of neural crest derived origin. NF2 encodes the tumor suppressor, Merlin, and its biochemical function is incompletely understood. One well-established function of Merlin is as a negative regulator of group A serine/threonine p21-activated kinases (PAKs). In these studies we explore the role of PAK1 and its closely related paralog, PAK2, both pharmacologically and genetically, in Merlin-deficient Schwann cells and in a genetically engineered mouse model (GEMM) that develops spontaneous vestibular and spinal schwannomas. We demonstrate that PAK1 and PAK2 are both hyper activated in Merlin-deficient murine schwannomas. In preclinical trials, a pan Group A PAK inhibitor, FRAX-1036, transiently reduced PAK1 and PAK2 phosphorylation in vitro, but had insignificant efficacy in vivo. NVS-PAK1-1, a PAK1 selective inhibitor, had a greater but still minimal effect on our GEMM phenotype. However, genetic ablation of Pak1 but not Pak2 reduced tumor formation in our NF2 GEMM. Moreover, germline genetic deletion of Pak1 was well tolerated, while conditional deletion of Pak2 in Schwann cells resulted in significant morbidity and mortality. These data support the further development of PAK1-specific small molecule inhibitors and the therapeutic targeting of PAK1 in vestibular schwannomas and argue against PAK1 and PAK2 existing as functionally redundant protein isoforms in Schwann cells.
Assuntos
Neurofibromatose 2/genética , Quinases Ativadas por p21/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Genes Supressores de Tumor/efeitos dos fármacos , Indóis , Longevidade , Camundongos , Neurilemoma/genética , Neurofibromatose 2/metabolismo , Neurofibromina 2/genética , Fosforilação , Piperidinas , Pirimidinas , Células de Schwann/metabolismo , Quinases Ativadas por p21/genéticaRESUMO
AIMS: We assessed morphological features of near-infrared spectroscopy (NIRS)-detected lipid-rich plaques (LRPs) by using optical coherence tomography (OCT) and intravascular ultrasound (IVUS). METHODS AND RESULTS: IVUS-NIRS and OCT were performed in the two non-infarct-related arteries (non-IRAs) in patients undergoing percutaneous coronary intervention for treatment of an acute coronary syndrome. A lesion was defined as the 4 mm segment with the maximum amount of lipid core burden index (maxLCBI4mm) of each LRP detected by NIRS. We divided the lesions into three groups based on the maxLCBI4mm value: <250, 250-399, and ≥400. OCT analysis and IVUS analysis were performed blinded for NIRS. We measured fibrous cap thickness (FCT) by using a semi-automated method. A total of 104 patients underwent multimodality imaging of 209 non-IRAs. NIRS detected 299 LRPs. Of those, 41% showed a maxLCBI4mm <250, 39% a maxLCBI4mm 251-399, and 19% a maxLCBI4mm ≥400. LRPs with a maxLCBI4mm ≥400, as compared with LRPs with a maxLCBI4mm 250-399 and <250, were more frequently thin-cap fibroatheroma (TCFA) (42.1% vs. 5.1% and 0.8%; P < 0.001) with a smaller minimum FCT (80 µm vs. 110 µm and 120 µm; P < 0.001); a higher IVUS-derived percent atheroma volume (53% vs. 53% and 44%; P < 0.001) and a higher remodelling index (1.08 vs. 1.02 and 1.01; P < 0.001). MaxLCBI4mm correlated with OCT-derived FCT (r = 0.404; P < 0.001) and was the best predictor for TCFA with an optimal cut-off value of 401 (area under the curve = 0.882; P < 0.001). CONCLUSION: LRPs with increasing maxLCBI4mm exhibit OCT and IVUS features of presumed plaque vulnerability including TCFA morphology, increased plaque burden, and positive remodelling.
Assuntos
Doença da Artéria Coronariana , Placa Aterosclerótica , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Humanos , Lipídeos , Placa Aterosclerótica/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia de Coerência Óptica , Ultrassonografia de IntervençãoRESUMO
In the original version of our article [...].
RESUMO
The paper presents the results of a students' survey carried out at "Vasile Alecsandri" University of Bacau, Romania, on the quality of educational process on online platforms in the context of the COVID-19 pandemic. The study was addressed to students from the Faculty of Engineering and the Faculty of Physical Education and Sports. The results of survey highlighted that most of students were satisfied with the measures taken by the university during the lockdown period and the way the teaching-learning-assessment process took place. However, some negative aspects were reported as: lack of an adequate infrastructure for some students, less effective teacher-student communication and interaction, impossibility of performing practical applications, lack of socialization, lack of learning motivation, less objective examination (e.g., possibility of cheating), possibility of physical and mental health degradation (e.g., too much time spent in front of screens, installation of a sedentary lifestyle). Consequently, for the new academic year, effective, and efficient measures must be implemented by the management of the university to remove, as much as possible, these negative issues and to improve the performance of online educational process.
Assuntos
Infecções por Coronavirus , Educação , Pandemias , Pneumonia Viral , Estudantes , Betacoronavirus , COVID-19 , Educação/normas , Humanos , Romênia , SARS-CoV-2 , Inquéritos e Questionários , UniversidadesRESUMO
In this paper, we develop a mathematical model for the early stage of atherosclerosis, as a chronic inflammatory disease. It includes also processes that are relevant for the "thickening" of the vessel walls, and prepares a more complete model including also the later stages of atherosclerosis. The model consists of partial differential equations: Navier-Stokes equations modeling blood flow, Biot equations modeling the fluid flow inside the poroelastic vessel wall, and convection/chemotaxis-reaction-diffusion equations modeling transport, signaling and interaction processes initiating inflammation and atherosclerosis. The main innovations of this model are: a) quantifying the endothelial permeability to low-density-lipoproteins (LDL) and to the monocytes as a function of WSS, cytokines and LDL on the endothelial surface; b) transport of monocytes on the endothelial surface, mimicking the monocytes adhesion and rolling; c) the monocytes influx in the lumen, as a function of factor increasing monocytopoiesis; d) coupling between Navier-Stokes system, Biot system and convection/chemotaxis-reaction-diffusion equations. Numerical simulations of a simplified model were performed in an idealized two-dimensional geometry in order to investigate the dynamics of endothelial permeability, and the growth and spread of immune cells populations and their dependence in particular on low-density-lipoprotein and wall-shear stress.
Assuntos
Aterosclerose , Modelos Cardiovasculares , Humanos , Lipoproteínas LDL , Permeabilidade , Estresse MecânicoRESUMO
OBJECTIVES: This study sought to examine the utility of multimodality intravascular imaging and of the endothelial shear stress (ESS) distribution to predict atherosclerotic evolution. BACKGROUND: There is robust evidence that intravascular ultrasound (IVUS)-derived plaque characteristics and ESS distribution can predict, with however limited accuracy, atherosclerotic evolution; nevertheless, it is yet unclear whether multimodality imaging and ESS mapping enable more accurate prediction of coronary plaque progression. METHODS: A total of 44 patients admitted with a myocardial infarction that had successful revascularization and 3-vessel IVUS and optical coherence tomography (OCT) imaging at baseline and 13-month follow-up were included in the study. The IVUS data acquired at baseline in the nonculprit vessels were fused with x-ray angiography to reconstruct coronary anatomy and in the obtained models blood flow simulation was performed and the ESS was estimated. The baseline plaque characteristics and ESS distribution were used to identify predictors of disease progression: defined as a lumen reduction and an increase in plaque burden at follow-up. RESULTS: Seventy-three vessels were included in the final analysis. Baseline ESS and the IVUS-derived but not the OCT-derived plaque characteristics were independently associated with a decrease in lumen area and an increase in plaque burden. Low ESS (odds ratio: 0.45; 95% confidence interval: 0.28 to 0.71; p < 0.001) and plaque burden (odds ratio: 0.73; 95% confidence interval: 0.54 to 0.97; p = 0.030) were the only independent predictors of disease progression at follow-up. The accuracy of the IVUS-derived plaque characteristics in predicting disease progression did not improve when ESS (AUC: 0.824 vs. 0.847; p = 0.127) or when OCT variables and ESS (AUC: 0.842; p = 0.611) were added into the model. CONCLUSIONS: ESS and OCT-derived variables did not improve the efficacy of IVUS in predicting disease progression. Further research is required to investigate whether multimodality imaging combined with ESS mapping will allow more reliable vulnerable plaque detection. (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction [STEMI] [COMFORTABLE]; NCT00962416).
Assuntos
Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Hemodinâmica , Imagem Multimodal , Placa Aterosclerótica , Tomografia de Coerência Óptica , Ultrassonografia de Intervenção , Idoso , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/terapia , Vasos Coronários/fisiopatologia , Progressão da Doença , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Fatores de TempoRESUMO
Elevated intracellular levels of reactive oxygen species (ROS), e.g. resulting from exposure to xenobiotics, can cause severe damages. Antioxidant defence mechanisms, which involve regulation of enzyme activities, protect cells to a certain extent. Nevertheless, continuous or increased exposure can overwhelm this system resulting in an adverse cellular state. To simulate exposure scenarios and to investigate the transition to an adverse cellular state, a mathematical model for the dynamics of ROS in response to xenobiotic-induced oxidative stress has been developed. It is based on exposure experiments of human urothelial cells (RT4) to the nitrated polycyclic aromatic hydrocarbon 3-nitrobenzanthrone (3-NBA), a component of diesel engine exhaust, and takes into account the following metabolic pathways of the antioxidant defence system: glutathione redox cycle scavenging directly ROS, the pentose phosphate pathway and the gluconate shunt as NADPH supplier and the beginning of glycolysis. In addition, ROS generation due to the bioactivation of 3-NBA has been implemented. The regulation of enzyme activities plays an important role in the presented mathematical model. The in silico model consists of ordinary differential equations on the basis of enzyme kinetics and mass action for the metabolism of 3-NBA. Parameters are either estimated from performed in vitro experiments via least-squares fitting or obtained from the literature. The results underline the importance of the pentose phosphate pathway to cope with oxidative stress and suggest an important role of the gluconate shunt during low-dose exposure.
Assuntos
Gluconatos/metabolismo , Estresse Oxidativo/genética , Via de Pentose Fosfato/fisiologia , Espécies Reativas de Oxigênio/uso terapêutico , Xenobióticos/efeitos adversos , Humanos , Modelos Teóricos , Espécies Reativas de Oxigênio/farmacologiaRESUMO
This consensus document is the second of two reports summarizing the views of an expert panel organized by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) on the clinical use of intracoronary imaging including intravascular ultrasound (IVUS), optical coherence tomography (OCT), and near infrared spectroscopy (NIRS)-IVUS. Beyond guidance of stent selection and optimization of deployment, invasive imaging facilitates angiographic interpretation and may guide treatment in acute coronary syndrome. Intravascular imaging can provide additional important diagnostic information when confronted with angiographically ambiguous lesions and allows assessment of plaque morphology enabling identification of vulnerability characteristics. This second document focuses on useful imaging features to identify culprit and vulnerable coronary plaque, which offers the interventional cardiologist guidance on when to adopt an intracoronary imaging-guided approach to the treatment of coronary artery disease and provides an appraisal of intravascular imaging-derived metrics to define the haemodynamic significance of coronary lesions.
Assuntos
Síndrome Coronariana Aguda , Intervenção Coronária Percutânea , Síndrome Coronariana Aguda/cirurgia , Consenso , Angiografia Coronária , Vasos Coronários , Humanos , Tomografia de Coerência Óptica , Ultrassonografia de IntervençãoRESUMO
This consensus document is the second of two reports summarizing the views of an expert panel organized by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) on the clinical use of intracoronary imaging including intravascular ultrasound (IVUS), optical coherence tomography (OCT), and near infrared spectroscopy (NIRS)-IVUS. Beyond guidance of stent selection and optimization of deployment, invasive imaging facilitates angiographic interpretation and may guide treatment in acute coronary syndrome. Intravascular imaging can provide additional important diagnostic information when confronted with angiographically ambiguous lesions and allows assessment of plaque morphology enabling identification of vulnerability characteristics. This second document focuses on useful imaging features to identify culprit and vulnerable coronary plaque, which offers the interventional cardiologist guidance on when to adopt an intracoronary imaging-guided approach to the treatment of coronary artery disease and provides an appraisal of intravascular imaging-derived metrics to define the haemodynamic significance of coronary lesions.
Assuntos
Síndrome Coronariana Aguda/diagnóstico por imagem , Angiografia Coronária/tendências , Doença da Artéria Coronariana/terapia , Intervenção Coronária Percutânea/efeitos adversos , Síndrome Coronariana Aguda/terapia , Adulto , Idoso , Estudos de Casos e Controles , Ensaios Clínicos como Assunto , Consenso , Angiografia Coronária/métodos , Doença da Artéria Coronariana/patologia , Tomada de Decisões , União Europeia/organização & administração , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/métodos , Placa Aterosclerótica/patologia , Valor Preditivo dos Testes , Ruptura/diagnóstico por imagem , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Stents , Tomografia de Coerência Óptica/métodos , Ultrassonografia de Intervenção/métodosRESUMO
RATIONALE: Secreted and membrane-bound proteins, which account for 1/3 of all proteins, play critical roles in heart health and disease. The endoplasmic reticulum (ER) is the site for synthesis, folding, and quality control of these proteins. Loss of ER homeostasis and function underlies the pathogenesis of many forms of heart disease. OBJECTIVE: To investigate mechanisms responsible for regulating cardiac ER function, and to explore therapeutic potentials of strengthening ER function to treat heart disease. METHODS AND RESULTS: Screening a range of signaling molecules led to the discovery that Pak (p21-activated kinase)2 is a stress-responsive kinase localized in close proximity to the ER membrane in cardiomyocytes. We found that Pak2 cardiac deleted mice (Pak2-CKO) under tunicamycin stress or pressure overload manifested a defective ER response, cardiac dysfunction, and profound cell death. Small chemical chaperone tauroursodeoxycholic acid treatment of Pak2-CKO mice substantiated that Pak2 loss-induced cardiac damage is an ER-dependent pathology. Gene array analysis prompted a detailed mechanistic study, which revealed that Pak2 regulation of protective ER function was via the IRE (inositol-requiring enzyme)-1/XBP (X-box-binding protein)-1-dependent pathway. We further discovered that this regulation was conferred by Pak2 inhibition of PP2A (protein phosphatase 2A) activity. Moreover, IRE-1 activator, Quercetin, and adeno-associated virus serotype-9-delivered XBP-1s were able to relieve ER dysfunction in Pak2-CKO hearts. This provides functional evidence, which supports the mechanism underlying Pak2 regulation of IRE-1/XBP-1s signaling. Therapeutically, inducing Pak2 activation by genetic overexpression or adeno-associated virus serotype-9-based gene delivery was capable of strengthening ER function, improving cardiac performance, and diminishing apoptosis, thus protecting the heart from failure. CONCLUSIONS: Our findings uncover a new cardioprotective mechanism, which promotes a protective ER stress response via the modulation of Pak2. This novel therapeutic strategy may present as a promising option for treating cardiac disease and heart failure.