Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13148, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849425

RESUMO

Recent data indicate that extracellular ATP affects wound healing efficacy via P2Y2-dependent signaling pathway. In the current work, we propose double-modified ATP analogue-alpha-thio-beta,gamma-methylene-ATP as a potential therapeutic agent for a skin regeneration. For the better understanding of structure-activity relationship, beside tested ATP analogues, the appropriate single-modified derivatives of target compound, such as alpha-thio-ATP and beta,gamma-methylene-ATP, were also tested in the context of their involvement in the activation of ATP-dependent purinergic signaling pathway via the P2Y2 receptor. The diastereomerically pure alpha-thio-modified-ATP derivatives were obtained using the oxathiaphospholane method as separate SP and RP diastereomers. Both the single- and double- modified ATP analogues were then tested for their impact on the viability and migration of human keratinocytes. The involvement of P2Y2-dependent purinergic signaling was analyzed in silico by molecular docking of the tested compounds to the P2Y2 receptor and experimentally by studying intracellular calcium mobilization in the human keratinocytes HaCaT. The effects obtained for ATP analogues were compared with the results for ATP as a natural P2Y2 agonist. To confirm the contribution of the P2Y2 receptor to the observed effects, the tests were also performed in the presence of the selective P2Y2 antagonist-AR-C118925XX. The ability of the alpha-thio-beta,gamma-methylene-ATP to influence cell migration was analyzed in vitro on the model HaCaT and MDA-MB-231 cells by wound healing assay and transwell migration test as well as in vivo using zebrafish system. The impact on tissue regeneration was estimated based on the regrowth rate of cut zebrafish tails. The in vitro and in vivo studies have shown that the SP-alpha-thio-beta,gamma-methylene-ATP analogue promotes regeneration-related processes, making it a suitable agent for enhance wound healing. Performed studies indicated its impact on the cell migration, induction of epithelial-mesenchymal transition and intracellular calcium mobilization. The enhanced regeneration of cut zebrafish tails confirmed the pro-regenerative activity of this ATP analogue. Based on the performed studies, the SP-alpha-thio-beta,gamma-methylene-ATP is proposed as a potential therapeutic agent for wound healing and skin regeneration treatment.


Assuntos
Trifosfato de Adenosina , Queratinócitos , Cicatrização , Peixe-Zebra , Cicatrização/efeitos dos fármacos , Humanos , Trifosfato de Adenosina/metabolismo , Animais , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Simulação de Acoplamento Molecular , Movimento Celular/efeitos dos fármacos , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Estrutura-Atividade
2.
ACS Omega ; 9(8): 9348-9356, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434886

RESUMO

Modified nucleotides are commonly used in molecular biology as substrates or inhibitors for several enzymes but also as tools for the synthesis of modified DNA and RNA fragments. Introduction of modification into RNA, such as phosphorothioate (PS), has been demonstrated to provide higher stability, more effective transport, and enhanced activity of potential therapeutic molecules. Hence, in order to achieve widespread use of RNA molecules in medicine, it is crucial to continuously refine the techniques that enable the effective introduction of modifications into RNA strands. Numerous analogues of nucleotides have been tested for their substrate activity with the T7 RNA polymerase and therefore in the context of their utility for use in in vitro transcription. In the present studies, the substrate preferences of the T7 RNA polymerase toward ß,γ-hypophospho-modified ATP derivatives for the synthesis of unmodified RNA and phosphorothioate RNA (PS) are presented. The performed studies revealed the stereoselectivity of this enzyme for α-thio-ß,γ-hypo-ATP derivatives, similar to that for α-thio-ATP. Additionally, it is demonstrated herein that hypodiphosphoric acid may inhibit in vitro transcription catalyzed by T7 RNA polymerase.

3.
ACS Med Chem Lett ; 14(7): 962-969, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37465308

RESUMO

Dicobalt hexacarbonyl 5-alkynyl furopyrimidine nucleoside analogs, with 4-methylphenyl (p-tolyl) and 4-pentylphenyl substituents attached at the C-6 base position, designed in the form of ribose acetyl esters, were synthesized (42-96%). Attached at the C-5 position were propargyl alcohol, its methyl ether and acetate derivatives, butynol, and the 4-methylphenyl- (p-tolyl) and 4-pentylphenyl-substituted alkynyl groups, which were coordinated to a dicobalt hexacarbonyl unit. The structure of 5-(3-acetoxyprop-1-yn-1-yl)-6-p-tolyl-2'-deoxyribofuranosyl-furo[2,3-d]pyrimidin-2-one was determined by X-ray crystallography. Density functional theory calculations performed on the corresponding derivative yielded geometric parameters for the dicobalt hexacarbonyl adduct of this ligand. The cytotoxic activity of each of dicobalt modified nucleosides on cancer cells of different phenotypes was determined in vitro. The investigated compounds showed antiproliferative effects with median inhibitory concentration (IC50) values in the ranges of 14-90 and 9-50 µM for HeLa and K562 cells, respectively. The formation of reactive oxygen species in the presence of modified nucleosides was determined in K562 cells. The results indicate that the mechanism of action for the studied compounds may be related to the induction of oxidative stress.

4.
Curr Med Chem ; 30(11): 1232-1255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35319356

RESUMO

Adenosine triphosphate (ATP) is one of the most important molecules of life, present both inside the cells and extracellularly. It is an essential building block for nucleic acids biosynthesis and crucial intracellular energy storage. However, one of the most interesting functions of ATP is the role of a signaling molecule. Numerous studies indicate the involvement of ATP-dependent pathways in maintaining the proper functioning of individual tissues and organs. Herein, the latest data indicating the ATP function in the network of intra- and extracellular signaling pathways including purinergic signaling, MAP kinase pathway, mTOR and calcium signaling are collected. The main ATP-dependent processes maintaining the proper functioning of the nervous, cardiovascular and immune systems, as well as skin and bones, are summarized. The disturbances in the ATP amount, its cellular localization, or interaction with target elements may induce pathological changes in signaling pathways leading to the development of serious diseases. The impact of an ATP imbalance on the development of dangerous health dysfunctions such as neurodegeneration diseases, cardiovascular diseases (CVDs), diabetes mellitus, obesity, cancers and immune pathogenesis are discussed here.


Assuntos
Trifosfato de Adenosina , Transdução de Sinais , Humanos , Trifosfato de Adenosina/metabolismo
5.
Curr Med Chem ; 30(11): 1320-1347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36239720

RESUMO

In recent years, RNA has emerged as a medium with a broad spectrum of therapeutic potential, however, for years, a group of short RNA fragments was studied and considered therapeutic molecules. In nature, RNA plays both functions, with coding and non-coding potential. For RNA, like any other therapeutic, to be used clinically, certain barriers must be crossed. Among them, there are biocompatibility, relatively low toxicity, bioavailability, increased stability, target efficiency and low off-target effects. In the case of RNA, most of these obstacles can be overcome by incorporating modified nucleotides into its structure. This may be achieved by both, in vitro and in vivo biosynthetic methods, as well as chemical synthesis. Some advantages and disadvantages of each approach are summarized here. The wide range of nucleotide analogues has been tested for their utility as monomers for RNA synthesis. Many of them have been successfully implemented, and a lot of pre-clinical and clinical studies involving modified RNA have been carried out. Some of these medications have already been introduced into clinics. After the huge success of RNA-based vaccines that were introduced into widespread use in 2020, and the introduction to the market of some RNA-based drugs, RNA therapeutics containing modified nucleotides appear to be the future of medicine.


Assuntos
Nucleotídeos , RNA , Humanos , RNA/química , Nucleotídeos/química , Biossíntese de Proteínas
6.
Cells ; 11(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563829

RESUMO

The bacterial enzyme tRNA 2-selenouridine synthase (SelU) is responsible for the conversion of 5-substituted 2-thiouridine (R5S2U), present in the anticodon of some bacterial tRNAs, into 5-substituted 2-selenouridine (R5Se2U). We have already demonstrated using synthetic RNAs that transformation S2U→Se2U is a two-step process, in which the S2U-RNA is geranylated and the resulting geS2U-RNA is selenated. Currently, the question is how SelU recognizes its substrates and what the cellular pathway of R5S2U→R5Se2U conversion is in natural tRNA. In the study presented here, we characterized the SelU substrate requirements, identified SelU-associated tRNAs and their specific modifications in the wobble position. Finally, we explained the sequence of steps in the selenation of tRNA. The S2U position within the RNA chain, the flanking sequence of the modification, and the length of the RNA substrate, all have a key influence on the recognition by SelU. MST data on the affinity of SelU to individual RNAs confirmed the presumed process. SelU binds the R5S2U-tRNA and then catalyzes its geranylation to the R5geS2U-tRNA, which remains bound to the enzyme and is selenated in the next step of the transformation. Finally, the R5Se2U-tRNA leaves the enzyme and participates in the translation process. The enzyme does not directly catalyze the R5S2U-tRNA selenation and the R5geS2U-tRNA is the intermediate product in the linear sequence of reactions.


Assuntos
Escherichia coli , RNA de Transferência , Bactérias/metabolismo , Escherichia coli/metabolismo , Compostos Organosselênicos , RNA de Transferência/genética , Especificidade por Substrato , Sulfurtransferases , Uridina/análogos & derivados
7.
Bioorg Chem ; 122: 105739, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35306417

RESUMO

Bacterial tRNA 2-selenouridine synthase (SelU) in vitro converts S2U-RNA to its selenium analog (Se2U-RNA) in a two-step process: (i) geranylation of S2U-RNA (with geranyl pyrophosphate, gePP), and (ii) selenation of the resulting geS2U-RNA (with the selenophosphate anion, SePO33-). Using an S2U-containing anticodon stem-loop fragment derived from tRNALys (S2U-RNA) and recombinant SelU with an MBP tag, we found that only geranyl (C10) pyrophosphate is the substrate for this enzyme, while other pyrophosphates such as isopentenyl (C5), dimethylallyl (C5), farnesyl (C15) and geranylgeranyl (C20) are not. Interestingly, methyl (C1)- and C5-, C10-, and C15-prenyl-containing S2U-RNAs (which were chemically obtained) underwent the selenation reaction promoted by SelU, although the Se2U-RNA product was obtained in decreasing yields in the following order: geranyl ≥ farnesyl > dimethylallyl ≫ methyl. Microscale thermophoresis showed an affinity between gePP and SelU in the micromolar range, while the other pyrophosphates tested, such as isopentenyl, dimethylallyl, farnesyl and geranylgeranyl, either did not bind to the protein or their binding affinity was above 1 mM. These results agree well with the in silico analysis, with gePP being the best binding substrate (the lowest relative free energy of binding (ΔG) and a small solvent-accessible surface area (SASA)). These results suggest that SelU has high substrate specificity for the prenylation reaction (only gePP is accepted), whereas there is little discrimination for the selenation reaction. We therefore suggest that only gePP and the geranylated tRNA serve as substrates for the conversion of 2-thio-tRNAs to 2-seleno-tRNAs, as it is found in the bacterial system.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Selênio , Sulfurtransferases , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Neopreno , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
8.
J Phys Chem B ; 126(2): 430-442, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34990129

RESUMO

This work shows that S atom substitution in phosphate controls the directionality of hole transfer processes between the base and sugar-phosphate backbone in DNA systems. The investigation combines synthesis, electron spin resonance (ESR) studies in supercooled homogeneous solution, pulse radiolysis in aqueous solution at ambient temperature, and density functional theory (DFT) calculations of in-house synthesized model compound dimethylphosphorothioate (DMTP(O-)═S) and nucleotide (5'-O-methoxyphosphorothioyl-2'-deoxyguanosine (G-P(O-)═S)). ESR investigations show that DMTP(O-)═S reacts with Cl2•- to form the σ2σ*1 adduct radical -P-S[Formula: see text]Cl, which subsequently reacts with DMTP(O-)═S to produce [-P-S[Formula: see text]S-P-]-. -P-S[Formula: see text]Cl in G-P(O-)═S undergoes hole transfer to Gua, forming the cation radical (G•+) via thermally activated hopping. However, pulse radiolysis measurements show that DMTP(O-)═S forms the thiyl radical (-P-S•) by one-electron oxidation, which did not produce [-P-S[Formula: see text]S-P-]-. Gua in G-P(O-)═S is oxidized unimolecularly by the -P-S• intermediate in the sub-picosecond range. DFT thermochemical calculations explain the differences in ESR and pulse radiolysis results obtained at different temperatures.


Assuntos
DNA , Fosfatos , DNA/química , Fosfatos/química , Radiólise de Impulso , Açúcares , Enxofre
9.
Materials (Basel) ; 13(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287168

RESUMO

A novel strategy, recently developed by us, to use polyhedral oligomeric silsesquioxanes (POSS) as an anti-cancer drug carrier is presented. Anthracycline:POSS complexes were prepared by simple co-addition of doxorubicin (DOX) or daunorubicin (DAU) with hydrophilic POSS(OH)32. Co-delivery of POSS and anthracyclines led to higher anti-cancer activity towards HeLa (cervical cancer endothelial) and MCF-7 (human breast adenocarcinoma) cell lines. The obtained supramolecular hybrid complexes were characterised by nuclear magnetic resonance (NMR) spectroscopy (nuclear Overhauser effect spectroscopy [NOESY] and homonuclear correlation spectroscopy [COSY]), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The two-dimensional (2D) NOESY spectra of the complexes showed the cross-correlation peaks for hydroxyl groups of POSS (~4.3-4.8 ppm) with OH groups of DOX and DAU. FTIR showed that hydroxyl group of POSS can interact with amine and hydroxyl groups of DOX and DAU. The viability of HeLa and MCF-7 was analysed with the MTT assay to evaluate the cytotoxicity of free DOX and DAU and the relevant complexes with POSS at different molar ratios. At a low DOX concentration (2.5 µM), for molar ratios 1:1, 1:4, and 1:8 (POSS:DOX), the complexes showed two and three times higher cytotoxicity towards HeLa and MCF-7 cells, respectively, than DOX itself after both 24- and 48-h incubation. The 1 µM concentration for a 1:4 POSS:DOX molecular ratio and the 2.5 µM concentration for all complexes were more toxic towards MCF-7 cells than free DOX after 48-h incubation. In the case of POSS:DAU complexes, there was higher toxicity than that of free drug after 48-h incubation. It can be concluded that the formation of non-covalent complexes increases toxicity of anthracycline drugs towards Hela and MCF-7 cells. The novel complexes are inexpensive to prepare and more effective than free drugs at low systemic toxicity.

10.
Anticancer Agents Med Chem ; 19(3): 375-388, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30465514

RESUMO

BACKGROUND: Novel derivatives of benzo[b]furan were found to be highly toxic towards human chronic myelogenous (K562), acute myelogenous (HL-60) and acute lymphoblastic (MOLT-4) leukemia cells. OBJECTIVE: The objective was the characterization of the biological activity of novel benzofurans (influence on apoptosis, mitogen-activated protein kinases and on the cell cycle). Cellular protein(s) targeted by test benzofurans and mechanism of action were identified. METHODS: The methods utilized in the study were chemical synthesis, fluorescence assays, flow cytometry, gene expression by DNA microarray and real-time RT-PCR, western blotting, cytotoxicity assays, pull-down assay, mass spectroscopy, in vitro polymerization of tubulin, molecular docking. RESULTS: 1,1'-[3-(bromomethyl)-5,6- dimethoxy-1-benzofuran-2,7-diyldiethanone (1) and methyl 4-bromo-6- (dibromoacetyl)-5-hydroxy-2-methyl-1-benzofuran-3-carboxylate (2) induced apoptosis in K562 and MOLT-4 cells. The profiling of gene expression revealed that 1 and 2 increased the expression of proapoptotic genes involved in both receptor (TNFRSF 10A, TNFRSF 10B, CASP8) and mitochondrial (BAX, BID, NOXA, APAF1) pathways of apoptosis. Test benzo[b]furans activated c-Jun N-terminal kinase (JNK) and p38 kinase in K562 cells. Tubulin was identified as a protein target for benzo[b]furans in pull-down experiments with biotinylated 2. Test benzo[b]furans inhibited polymerization of tubulin monomers in vitro, decreased the level of cellular microtubules and arrested cells in a G2/M phase. Molecular docking suggests that benzo[b]furans 1 and 2 bind to tubulin via colchicine binding pocket and the complex is stabilized mainly by hydrophobic interactions. CONCLUSION: Novel benzo[b]furans with anti-microtubule activity were identified. They induce apoptosis in cancer cells and cause G2/M cell cycle arrest. Biological activity of 1 and 2 makes them potential lead compounds for development as anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Benzofuranos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/síntese química , Antineoplásicos/química , Benzofuranos/síntese química , Benzofuranos/química , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fase G2/efeitos dos fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/química
11.
FEBS Lett ; 592(13): 2248-2258, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29862510

RESUMO

To date the only tRNAs containing nucleosides modified with a selenium (5-carboxymethylaminomethyl-2-selenouridine and 5-methylaminomethyl-2-selenouridine) have been found in bacteria. By using tRNA anticodon-stem-loop fragments containing S2U, Se2U, or geS2U, we found that in vitro tRNA 2-selenouridine synthase (SelU) converts S2U-RNA to Se2U-RNA in a two-step process involving S2U-RNA geranylation (with ppGe) and subsequent selenation of the resulting geS2U-RNA (with SePO33- ). No 'direct' S2U-RNA→Se2U-RNA replacement is observed in the presence of SelU/SePO33- only (without ppGe). These results suggest that the in vivo S2U→Se2U and S2U→geS2U transformations in tRNA, so far claimed to be the elementary reactions occurring independently in the same domain of the SelU enzyme, should be considered a combination of two consecutive events - geranylation (S2U→geS2U) and selenation (geS2U→Se2U).


Assuntos
Escherichia coli/enzimologia , Compostos Organosselênicos/metabolismo , Selênio/metabolismo , Sulfurtransferases/fisiologia , Terpenos/metabolismo , Uridina/análogos & derivados , Sítios de Ligação , Carbono/metabolismo , Catálise , Escherichia coli/genética , Fosfatos de Poli-Isoprenil/metabolismo , Processamento de Proteína Pós-Traducional/genética , RNA Bacteriano/química , RNA Bacteriano/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Sulfurtransferases/genética , Tiouridina/química , Tiouridina/metabolismo , Uridina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA