Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(6): 544, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38740657

RESUMO

A comprehensive analysis of municipal solid plastic waste (MSPW) management while emphasizing plastic pollution severity in coastal cities around the world is mandatory to alleviate the augmenting plastic waste footprint in nature. Thus, decision-makers' persuasion for numerous management solutions of MSPW flow-control can be met through meditative systematic strategies at the regional level. To forecast solutions focused on systematic policies, an agent-based system dynamics (ASD) model has been developed and simulated from 2023 to 2040 while considering significant knit parameters for MSPW management of Khulna City in Bangladesh. Baseline simulation results show that per-capita plastic waste generation will increase to 11.6 kg by 2040 from 8.92 kg in 2023. Eventually, the landfilled quantity of plastic waste has accumulated to 70,000 tons within 18 years. Moreover, the riverine discharge has increased to 834 tons in 2040 from a baseline quantity of 512 tons in 2023. So the plastic waste footprint index (PWFI) value rises to 24 by 2040. Furthermore, the absence of technological initiatives is responsible for the logarithmic rise of non-recyclable plastic waste to 1.35*1000=1350 tons. Finally, two consecutive policy scenarios with baseline factors such as controlled riverine discharge, increased collection and separation of plastic waste, expansion of recycle business, and locally achievable plastic conversion technologies have been simulated. Therefore, policy 2, with 69% conversion, 80% source separation, and 50% riverine discharge reduction of MSPW, has been found adequate from a sustainability perspective with the lowest PWFI ranges of 3.97 to 1.07 alongside a per-capita MSPW generation of 7.63 to 10 kg from 2023 till 2040.


Assuntos
Cidades , Plásticos , Resíduos Sólidos , Gerenciamento de Resíduos , Bangladesh , Plásticos/análise , Resíduos Sólidos/análise , Resíduos Sólidos/estatística & dados numéricos , Gerenciamento de Resíduos/métodos , Eliminação de Resíduos/métodos , Previsões , Política Ambiental , Monitoramento Ambiental/métodos , Reciclagem
2.
Waste Manag ; 129: 1-19, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34010802

RESUMO

The long term municipal solid wastes (MSW) management plan of Khulna city has to be focused on the Bangladesh Delta Plan 2100. In most developing countries, conventional system of MSW management approach has been found inadequate due to complex nature of MSW. This study presents a system dynamics (SD) model to predict generation, collection, treatment and landfill capacity of MSW until the year of 2050 to analyze the necessity for MSW management for the coastal city of Khulna, Bangladesh. Simulation results show that MSW generation increases from 168 thousand tons in year 2020 to 1.2 million tons with a per capita generation from 0.117 tons to 0.561 tons by year 2050. The total fund required for collection and landfill capacity also increases, while treatment capacity decreases over time, resulting a piling up of massive amount of uncleared MSW of 10.3 million tons in year 2050 from 152 thousand tons in year 2020. The uncleared and untreated MSW, composite index and public concern increases with time in an exponential nature for the projection period of next thirty years. The population in this model is considered as the only linear growth factor which increases from 1.5 million in year 2020 to 2.24 million by year 2050. The developed SD model also shows that the policy of only to increase collection capacity with the increased allocation of budget is not adequate for improving environmental sustainability, rather an increase of budget is essential for developing MSW treatment facility. In this study, validation methods including behavior sensitivity, data sensitivity and dimensional consistency in extreme condition has been performed to validate the model. The outcome of this SD model can be used as a dynamic testing module for MSW management policy analysis and strategic measures that can be implemented effectively in the context of developing counties.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Bangladesh , Cidades , Resíduos Sólidos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA