Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Breed ; 44(8): 54, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39148502

RESUMO

Utilization of crop wild relatives of wheat can be very effective in building the genetic diversity to cater to the evolving strains of disease pathogens. Aegilops speltoides is a rich source of rust resistance genes however transferring those to wheat genome can be tedious due to co-transfer and preferential transmission of undesirable genes causing gametocidal activity. Such an unholy association was observed in Triticum aestivum-Ae. speltoides derivative line Sel. 2427 which possess the broad-spectrum leaf rust seedling resistance gene (LrS2427). Molecular analysis based on 35 K wheat breeder's array revealed the maximum percentage of Ae. speltoides genome introgression on homoeologous group 2. In situ hybridization studies revealed the presence of S genome in Sel. 2427, showing six translocations on four chromosomes. Karyotyping using repetitive probe (AAG)6 revealed that the two chromosomes involved are 2D and 2B. Genic regions causing gametocidal activity were identified by dissecting it into component traits and QTLs on 2D and 2B chromosomes were revealed in case of the trait seed shrivelling index. To break the inadvertent association of LrS2427 with gametocidal genes, F1(Agra Local X Sel. 2427) seeds were irradiated with gamma rays and stable leaf rust resistant mutants lacking gametocidal activity were developed. These mutants showed resistance to different races of leaf rust pathogen and showed superior agronomic performance as well. These mutants could be a great resource in wheat improvement for utilization of the leaf rust resistance gene LrS2427 without any yield penalty. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01491-8.

2.
Sci Rep ; 14(1): 14112, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898132

RESUMO

Hybrid development is one of the most promising strategies for boosting crop yields. Parental lines used to create hybrids must have good per se performance and disease resistance for developing superior hybrids. Indian wheat line HD3209 was developed by introducing the rust resistance genes Lr19/Sr25 into the background of popular wheat variety HD2932. The wheat line HD3209 carrying Lr19/Sr25 has been successfully and rapidly converted to the CMS line A-HD3209, with 96.01% background genome recovery, based on selection for agro-morphological traits, rust resistance, pollen sterility, and foreground and background analyses utilizing SSR markers. The converted CMS line A-HD3209 was completely sterile and nearly identical to the recurrent parent HD3209. Based on high per se performance and rust resistance, the study concludes that the derived CMS line A-HD3209 is promising and can be employed successfully in hybrid development.


Assuntos
Resistência à Doença , Genótipo , Doenças das Plantas , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Basidiomycota/genética , Melhoramento Vegetal/métodos , Genes de Plantas , Hibridização Genética , Pão/microbiologia
3.
Front Nutr ; 9: 1017680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245493

RESUMO

Amid environmental crises, a galloping population, and changing food habits, increasing fruit production with nutritional quality is a global challenge. To address this, there is a necessity to exploit the germplasm accessions in order to develop high-yielding varieties/hybrids with good adaptability and high quality fruit under changing environmental and biological conditions. In the study, a total of 33 morpho-biochemical traits enabled an assessment of the genetic variability, diversity, and structure in a collection of 28 diverse germplasm lines of guava. Results showed that highly significant genetic variability existed in the studied traits in the guava germplasm. The coefficient of variation values for the qualitative and quantitative traits varied from 23.5-72.36 to 1.39-58.62%, respectively. Germplasm Thai, Lucknow-49, Punjab Pink, Psidium friedrichsthalianum, and Shweta had the highest fruit weight (359.32 g), ascorbic acid content (197.27 mg/100 g fruit), total phenolic content (186.93 mg GAE/100 g), titratable acidity (0.69 percent), and antioxidant capacity (44.49 µmolTrolox/g), respectively. Fruit weight was positively correlated with ascorbic acid content; however, titratable acidity was negatively correlated with fruit weight. The principal component analysis (PCA) was 84.2% and 93.3% for qualitative and quantitative traits, respectively. Furthermore, K-mean clustering was executed; the population was grouped into three clusters for both traits. Additionally, the dendrogram using agglomerative hierarchical clustering (AHC), where all the germplasm were grouped into four clusters, revealed that among the clusters, clusters III and IV were highly divergent. The high variability, diversity, and structure could be utilized for the breeding programme of guava and also explored for molecular analysis using next-generation technology to enhance the guava yield and nutrition properties and also develop the climate resilient technology to fulfill the existing demand gap and nutrition availability, which could not only mitigate the nutrition requirement but also enhance the easy availability of fruits year-round.

4.
Plants (Basel) ; 11(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35956445

RESUMO

Wheat leaf rust caused by Puccinia triticina Eriks is an important disease that causes yield losses of up to 40% in susceptible varieties. Tetraploid emmer wheat (T. turgidum ssp. Dicoccum), commonly called Khapli wheat in India, is known to have evolved from wild emmer (Triticum turgidum var. dicoccoides), and harbors a good number of leaf rust resistance genes. In the present study, we are reporting on the screening of one hundred and twenty-three dicoccum wheat germplasm accessions against the leaf rust pathotype 77-5. Among these, an average of 45.50% of the germplasms were resistant, 46.74% were susceptible, and 8.53% had mesothetic reactions. Further, selected germplasm lines with accession numbers IC138898, IC47022, IC535116, IC535133, IC535139, IC551396, and IC534144 showed high level of resistance against the eighteen prevalent pathotypes. The infection type varied from ";", ";N", ";N1" to ";NC". PCR-based analysis of the resistant dicoccum lines with SSR marker gwm508 linked to the Lr53 gene, a leaf rust resistance gene effective against all the prevalent pathotypes of leaf rust in India and identified from a T. turgidum var. dicoccoides germplasm, indicated that Lr53 is not present in the selected accessions. Moreover, we have also generated 35K SNP genotyping data of seven lines and the susceptible control, Mandsaur Local, to study their relationships. The GDIRT tool based on homozygous genotypic differences revealed that the seven genotypes are unique to each other and may carry different resistance genes for leaf rust.

5.
3 Biotech ; 9(5): 183, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31065483

RESUMO

Grain softness has been a major trait of interest in wheat because of its role in producing flour suitable for making high-quality biscuits, cookies, cakes and some other products. In the present study, marker-assisted backcross breeding scheme was deployed to develop advanced wheat lines with soft grains. The Australian soft-grained variety Barham was used as the donor parent to transfer the puroindoline grain softness gene Pina-D1a to the Indian variety, DBW14, which is hard grained and has PinaD1bPinbD1a genes. Foreground selection with allele-specific PCR-based primer for Pina-D1a (positive selection) was used to identify heterozygous BC1F1 plants. Background selection with 173 polymorphic SSR primers covering all the 21 chromosomes was also carried out, in the foreground-selected BC1F1 plants. BC1F2 plants were selected by ascertaining the presence of Pina-D1a (positive selection) and absence of Pina-D1b (negative selection). Using the approach of positive, negative and background selection with molecular markers, 15 BC1F2 and 31 BC2F1 plants were finally selected. The 15 BC1F2 plants were selfed and the 31 BC2F1 plants were further backcrossed and selfed to raise BC3F1 and BC2F2 progenies, respectively. A part of the BC2F2 seed of each of the 31 plants was analyzed for grain hardness index (GHI) with single-kernel characterization system. The GHI varied from 12.1 to 37.1 in the seeds borne on the 31 BC2F1 plants. The reasons for this variation and further course of action are discussed.

6.
Sci Rep ; 9(1): 778, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30692561

RESUMO

Herbicide resistance (HR) is a major concern for the agricultural producers as well as environmentalists. Resistance to commonly used herbicides are conferred due to mutation(s) in the genes encoding herbicide target sites/proteins (GETS). Identification of these genes through wet-lab experiments is time consuming and expensive. Thus, a supervised learning-based computational model has been proposed in this study, which is first of its kind for the prediction of seven classes of GETS. The cDNA sequences of the genes were initially transformed into numeric features based on the k-mer compositions and then supplied as input to the support vector machine. In the proposed SVM-based model, the prediction occurs in two stages, where a binary classifier in the first stage discriminates the genes involved in conferring the resistance to herbicides from other genes, followed by a multi-class classifier in the second stage that categorizes the predicted herbicide resistant genes in the first stage into any one of the seven resistant classes. Overall classification accuracies were observed to be ~89% and >97% for binary and multi-class classifications respectively. The proposed model confirmed higher accuracy than the homology-based algorithms viz., BLAST and Hidden Markov Model. Besides, the developed computational model achieved ~87% accuracy, while tested with an independent dataset. An online prediction server HRGPred ( http://cabgrid.res.in:8080/hrgpred ) has also been established to facilitate the prediction of GETS by the scientific community.


Assuntos
Biologia Computacional/métodos , Resistência a Herbicidas , Proteínas de Plantas/genética , Plantas/genética , Algoritmos , Regulação da Expressão Gênica de Plantas , Modelos Genéticos , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Máquina de Vetores de Suporte
7.
ACS Nano ; 6(11): 9807-17, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23075161

RESUMO

We demonstrate that NaAlH(4) confined within the nanopores of a titanium-functionalized metal-organic framework (MOF) template MOF-74(Mg) can reversibly store hydrogen with minimal loss of capacity. Hydride-infiltrated samples were synthesized by melt infiltration, achieving loadings up to 21 wt %. MOF-74(Mg) possesses one-dimensional, 12 Å channels lined with Mg atoms having open coordination sites, which can serve as sites for Ti catalyst stabilization. MOF-74(Mg) is stable under repeated hydrogen desorption and hydride regeneration cycles, allowing it to serve as a "nanoreactor". Confining NaAlH(4) within these pores alters the decomposition pathway by eliminating the stable intermediate Na(3)AlH(6) phase observed during bulk decomposition and proceeding directly to NaH, Al, and H(2), in agreement with theory. The onset of hydrogen desorption for both Ti-doped and undoped nano-NaAlH(4)@MOF-74(Mg) is ∼50 °C, nearly 100 °C lower than bulk NaAlH(4). However, the presence of titanium is not necessary for this increase in desorption kinetics but enables rehydriding to be almost fully reversible. Isothermal kinetic studies indicate that the activation energy for H(2) desorption is reduced from 79.5 kJ mol(-1) in bulk Ti-doped NaAlH(4) to 57.4 kJ mol(-1) for nanoconfined NaAlH(4). The structural properties of nano-NaAlH(4)@MOF-74(Mg) were probed using (23)Na and (27)Al solid-state MAS NMR, which indicates that the hydride is not decomposed during infiltration and that Al is present as tetrahedral AlH(4)(-) anions prior to desorption and as Al metal after desorption. Because of the highly ordered MOF structure and monodisperse pore dimensions, our results allow key template features to be identified to ensure reversible, low-temperature hydrogen storage.


Assuntos
Compostos de Alumínio/química , Hidrogênio/química , Hidrogênio/isolamento & purificação , Magnésio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Sódio/química , Titânio/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Phys Chem Chem Phys ; 14(22): 8160-9, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22569707

RESUMO

Reactive nanoparticles are of great interest for applications ranging from catalysis to energy storage. However, efforts to relate cluster size to thermodynamic stability and chemical reactivity are hampered by broad pore size distributions and poorly characterized chemical environments in many microporous templates. Metal hydrides are an important example of this problem. Theoretical calculations suggest that reducing their critical dimension to the nanoscale can in some cases considerably destabilize these materials and there is clear experimental evidence for accelerated kinetics, making hydrogen storage applications more attractive in some cases. However, quantitative measurements establishing the influence of size on thermodynamics are lacking, primarily because carbon aerogels often used as supports provide inadequate control over size and pore chemistry. Here, we employ the nanoporous metal-organic framework (MOF) Cu-BTC (also known as HKUST-1) as a template to synthesize and confine the complex hydride NaAlH(4). The well-defined crystalline structure and monodisperse pore dimensions of this MOF allow detailed, quantitative probing of the thermodynamics and kinetics of H(2) desorption from 1-nm NaAlH(4) clusters (NaAlH(4)@Cu-BTC) without the ambiguity associated with amorphous templates. Hydrogen evolution rates were measured as a function of time and temperature using the Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry method, in which sample mass changes are correlated with a complete analysis of evolved gases. NaAlH(4)@Cu-BTC undergoes a single-step dehydrogenation reaction in which the Na(3)AlH(6) intermediate formed during decomposition of the bulk hydride is not observed. Comparison of the thermodynamically controlled quasi-equilibrium reaction pathways in the bulk and nanoscale materials shows that the nanoclusters are slightly stabilized by confinement, having an H(2) desorption enthalpy that is 7 kJ (mol H(2))(-1) higher than the bulk material. In addition, the activation energy for desorption is only 53 kJ (mol H(2))(-1), more than 60 kJ (mol H(2))(-1) lower than the bulk. When combined with first-principles calculations of cluster thermodynamics, these data suggest that although interactions with the pore walls play a role in stabilizing these particles, size exerts the greater influence on the thermodynamics and reaction rates.

9.
J Am Chem Soc ; 131(37): 13198-9, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19719170

RESUMO

Metal-organic frameworks (MOFs) offer an attractive alternative to traditional hard and soft templates for nanocluster synthesis because their ordered crystalline lattice provides a highly controlled and inherently understandable environment. We demonstrate that MOFs are stable hosts for metal hydrides proposed for hydrogen storage and their reactive precursors, providing platform to test recent theoretical predictions that some of these materials can be destabilized with respect to hydrogen desorption by reducing their critical dimension to the nanoscale. With the MOF HKUST-1 as template, we show that NaAlH(4) nanoclusters as small as eight formula units can be synthesized. The confinement of these clusters within the MOF pores dramatically accelerates the desorption kinetics, causing decomposition to occur at approximately 100 degrees C lower than bulk NaAlH(4). However, using simultaneous thermogravimetric modulated beam mass spectrometry, we also show that the thermal decomposition mechanism of NaAlH(4) is complex and may involve processes such as nucleation and growth in addition to the normally assumed two-step chemical decomposition reactions.

10.
Dalton Trans ; (28): 3485-90, 2006 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16832499

RESUMO

Novel mixed amido-malonato complexes of titanium are reported. The complexes were synthesized by partially replacing the amido groups from the complexes [Ti(NMe2)4] and [Ti(NEt2)4] via Brønstedt acid/base reactions, using the malonate-ligands di-isopropylmalonate (Hdpml) and di-tert-butylmalonate (Hdbml). Four representative complexes were synthesized and fully characterised by 1H NMR, 13C NMR, CHN analysis and mass spectrometry. The crystal structures of the six-coordinated complexes [Ti(NMe2)2(dbml)2] (3) and [Ti(NEt2)2(dbml)2] (4) are presented and discussed. The complexes are solids and the chemical and thermal characteristics of the complexes strongly depend on the substitution at the malonate ligand. While dpml containing complexes show a promising behaviour for classical MOCVD, dbml containing complexes seem to be more suitable for liquid injection-metal-organic chemical vapour deposition (LI-MOCVD). Based on its thermal characteristics, the most promising complex for thermal CVD, [Ti(NEt2)2(dpml)2] (2) was selected for preliminary MOCVD experiments, which indicate a good suitability for the deposition of TiO2 thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA