Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Device ; 2(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-39184953

RESUMO

Micromagnetic stimulation (µMS) using small, implantable microcoils is a promising method for achieving neuronal activation with high spatial resolution and low toxicity. Herein, we report a microcoil array for localized activation of cortical neurons and retinal ganglion cells. We developed a computational model to relate the electric field gradient (activating function) to the geometry and arrangement of microcoils, and selected a design that produced an anisotropic region of activation <50 µm wide. The device was comprised of an SU-8/Cu/SU-8 tri-layer structure, which was flexible, transparent and conformal and featured four individually-addressable microcoils. Interfaced with cortex or retina explants from GCaMP6-expressing mice, we observed that individual neurons localized within 40 µm of a microcoil tip could be activated repeatedly and in a dose- (power-) dependent fashion. These results demonstrate the potential of µMS devices for brain-machine interfaces and could enable routes toward bioelectronic therapies including prosthetic vision devices.

2.
Adv Nanobiomed Res ; 1(12)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35399546

RESUMO

Retinal prostheses are a promising therapeutic intervention for patients afflicted by outer retinal degenerative diseases like retinitis pigmentosa and age-related macular degeneration. While significant advances in the development of retinal implants have been made, the quality of vision elicited by these devices remains largely sub-optimal. The variability in the responses produced by retinal devices is most likely due to the differences between the natural cell type-specific signaling that occur in the healthy retina vs. the non-specific activation of multiple cell types arising from artificial stimulation. In order to replicate these natural signaling patterns, stimulation strategies must be capable of preferentially activating specific RGC types. To design more selective stimulation strategies, a better understanding of the morphological factors that underlie the sensitivity to prosthetic stimulation must be developed. This review will focus on the role that different anatomical components play in driving the direct activation of RGCs by extracellular stimulation. Briefly, it will (1) characterize the variability in morphological properties of α-RGCs, (2) detail the influence of morphology on the direct activation of RGCs by electric stimulation, and (3) describe some of the potential biophysical mechanisms that could explain differences in activation thresholds and electrically evoked responses between RGC types.

3.
Sci Adv ; 6(37)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917708

RESUMO

Recently, mouse OFF-α transient (OFF-α T) retinal ganglion cells (RGCs) were shown to display a gradient of light responses as a function of position along the dorsal-ventral axis; response differences were correlated to differences in the level of excitatory presynaptic input. Here, we show that postsynaptic differences between cells also make a strong contribution to response differences. Cells in the dorsal retina had longer axon initial segments (AISs)-the greater number of Nav1.6 channels in longer AISs directly mediates higher rates of spiking and helps avoid depolarization block that terminates spiking in ventral cells with shorter AISs. The pre- and postsynaptic specializations that shape the output of OFF-α T RGCs interact in different ways: In dorsal cells, strong inputs and the long AISs are both necessary to generate their strong, sustained spiking outputs, while in ventral cells, weak inputs or the short AISs are both sufficient to limit the spiking signal.

4.
J Neural Eng ; 17(4): 045015, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736374

RESUMO

OBJECTIVE: Retinal prostheses strive to restore vison to patients that are blind from retinal degeneration by electrically stimulating surviving retinal ganglion cells (RGCs). The quality of elicited percepts remains limited however and it is desirable to develop improved stimulation strategies. Here, we examine how the anatomical and biophysical properties of RGCs influence activation thresholds, including the effects of variations found naturally. APPROACH: Detailed reconstructions were made of a large number of mouse α RGCs and were used to create an array of model cells; the models were used to study the effects of individual anatomical features on activation threshold to electric stimulation. Stimulation was delivered epiretinally from a point-source or disk electrode and consisted of monophasic or biphasic rectangular pulses. MAIN RESULTS: Modeling results show that the region of minimum threshold always is within the axon initial segment (AIS). The properties of this region as well as the absolute value of the minimum threshold are dependent on the length of the AIS as well as on the relative composition of sodium channels within the AIS. Other morphological features, including cell size, dendritic field size and the distance between the AIS and the soma had only a minimal influence on thresholds. Introducing even a small number of low-threshold Nav1.6 channels into the AIS was sufficient to lower minimum thresholds substantially although further increases in Nav1.6 had diminishing effects. The distance between the AIS and the electrode affects threshold levels while alignment of the electrode with the axon or dendritic parts of the RGC can result in lower thresholds, even if the distance to the cell remains the same. SIGNIFICANCE: Intrinsic morphological features can influence activation thresholds with the AIS having the strongest influence. However, the combined influence remains limited and may not be large enough to allow for selective activation between different RGC types.


Assuntos
Células Ganglionares da Retina , Próteses Visuais , Potenciais de Ação , Animais , Axônios , Estimulação Elétrica , Humanos , Camundongos
5.
Front Cell Neurosci ; 13: 436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611777

RESUMO

The anatomical properties of the axon initial segment (AIS) are tailored in certain types of CNS neurons to help optimize different aspects of neuronal function. Here, we questioned whether the AISs of retinal ganglion cells (RGC) were similarly customized, and if so, whether they supported specific RGC functions. To explore this, we measured the AIS properties in alpha sustained RGCs (α S RGCs) of mouse; α S RGCs sizes vary systematically along the nasal temporal axis of the retina, making these cells an attractive population with which to study potential correlations between AIS properties and cell size. Measurements of AIS length as well as distance from the soma revealed that both were scaled to cell size, i.e., cells with large dendritic fields had long AISs that were relatively far from the soma. Within the AIS, the percentage of Na v 1.6 voltage-gated sodium channels remained highly consistent, regardless of cell size or other AIS properties. Although ON RGCs were slightly larger than OFF cells at any given location of the retina, the level of scaling and relative distribution of voltage-gated sodium channels were highly similar. Computational modeling revealed that AIS scaling influenced spiking thresholds, spike rate as well as the kinetics of individual action potentials, Interestingly, the effect of individual features of the AIS varied for different neuronal functions, e.g., AIS length had a larger effect on the efficacy by which the AIS initiated spike triggered the somatic spike than it did on repetitive spiking. The polarity of the effect varied for different properties, i.e., increases to soma size increased spike threshold while increases to AIS length decreased threshold. Thus, variations in the relative level of scaling for individual components could fine tune threshold or other neuronal functions. Light responses were highly consistent across the full range of cell sizes suggesting that scaling may post-synaptically shape response stability, e.g., in addition to several well-known pre-synaptic contributors.

6.
Stem Cell Res Ther ; 3(4): 35, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22920724

RESUMO

INTRODUCTION: Adipose stem cells (ASCs) secrete many trophic factors that can stimulate tissue repair, including angiogenic factors, but little is known about how ASCs and their secreted factors influence cartilage regeneration. Therefore, the aim of this study was to determine the effects ASC-secreted factors have in repairing chondral defects. METHODS: ASCs isolated from male Sprague Dawley rats were cultured in monolayer or alginate microbeads supplemented with growth (GM) or chondrogenic medium (CM). Subsequent co-culture, conditioned media, and in vivo cartilage defect studies were performed. RESULTS: ASC monolayers and microbeads cultured in CM had decreased FGF-2 gene expression and VEGF-A secretion compared to ASCs cultured in GM. Chondrocytes co-cultured with GM-cultured ASCs for 7 days had decreased mRNAs for col2, comp, and runx2. Chondrocytes treated for 12 or 24 hours with conditioned medium from GM-cultured ASCs had reduced sox9, acan, and col2 mRNAs; reduced proliferation and proteoglycan synthesis; and increased apoptosis. ASC-conditioned medium also increased endothelial cell tube lengthening whereas conditioned medium from CM-cultured ASCs had no effect. Treating ASCs with CM reduced or abolished these deleterious effects while adding a neutralizing antibody for VEGF-A eliminated ASC-conditioned medium induced chondrocyte apoptosis and restored proteoglycan synthesis. FGF-2 also mitigated the deleterious effects VEGF-A had on chondrocyte apoptosis and phenotype. When GM-grown ASC pellets were implanted in 1 mm non-critical hyaline cartilage defects in vivo, cartilage regeneration was inhibited as evaluated by radiographic and equilibrium partitioning of an ionic contrast agent via microCT imaging. Histology revealed that defects with GM-cultured ASCs had no tissue ingrowth from the edges of the defect whereas empty defects and defects with CM-grown ASCs had similar amounts of neocartilage formation. CONCLUSIONS: ASCs must be treated to reduce the secretion of VEGF-A and other factors that inhibit cartilage regeneration, which can significantly influence how ASCs are used for repairing hyaline cartilage.


Assuntos
Tecido Adiposo/citologia , Indutores da Angiogênese/metabolismo , Cartilagem Hialina/fisiologia , Células-Tronco/metabolismo , Animais , Doenças das Cartilagens/diagnóstico por imagem , Doenças das Cartilagens/patologia , Doenças das Cartilagens/terapia , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Cartilagem Hialina/diagnóstico por imagem , Cartilagem Hialina/patologia , Masculino , Comunicação Parácrina , RNA Mensageiro/metabolismo , Radiografia , Ratos , Ratos Sprague-Dawley , Regeneração , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA