Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338737

RESUMO

The therapeutic effect of mesenchymal stromal cells (MSCs) has been described for a variety of disorders, including those affecting musculoskeletal tissues. In this context, the literature reports several data about the regenerative effectiveness of MSCs derived from bone marrow, adipose tissue, and an amniotic membrane (BMSCs, ASCs, and hAMSCs, respectively), either when expanded or when acting as clinical-grade biologic pillars of products used at the point of care. To date, there is no evidence about the superiority of one source over the others from a clinical perspective. Therefore, a reliable characterization of the tissue-specific MSC types is mandatory to identify the most effective treatment, especially when tailored to the target disease. Because molecular characterization is a crucial parameter for cell definition, the need for reliable normalizers as housekeeping genes (HKGs) is essential. In this report, the stability levels of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) were sifted into BMSCs, ASCs, and hAMSCs. Adult and fetal/neonatal MSCs showed opposite HKG stability rankings. Moreover, by analyzing MSC types side-by-side, comparison-specific HKGs emerged. The effect of less performant HKG normalization was also demonstrated in genes coding for factors potentially involved in and predicting MSC therapeutic activity for osteoarthritis as a model musculoskeletal disorder, where the choice of the most appropriate normalizer had a higher impact on the donors rather than cell populations when compared side-by-side. In conclusion, this work confirms HKG source-specificity for MSCs and suggests the need for cell-type specific normalizers for cell source or condition-tailored gene expression studies.


Assuntos
Genes Essenciais , Células-Tronco Mesenquimais , Medula Óssea , Diferenciação Celular/genética , Medicina Regenerativa , Âmnio , Tecido Adiposo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
2.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396899

RESUMO

The Second International StemNet (Federation of Stem Cell Research Associations) meeting took place on 18-20 October 2023 in Brescia (Italy), with the support of the University of Brescia and the Zooprophylactic Institute of Lombardy and Emilia Romagna. The program of the meeting was articulated in nine sections: (1) Biomedical Communication in Italy: Critical Aspects; (2) StemNet Next Generation Session; (3) Cell-Free Therapies; (4) Tips and Tricks of Research Valorisation; (5) Stem Cells and Cancer; (6) Stem Cells in Veterinary Applications; (7) Stem Cells in Clinical Applications; (8) Organoids and 3D Systems; (9) induced pluripotent stem cells (iPCS) and Gene Therapy. National and International speakers presented their scientific works, inspiring debates and discussions among the attendees. The participation in the meeting was high, especially because of the young researchers who animated all the sessions and the rich poster session.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Humanos , Neoplasias/terapia , Itália , Terapia Genética , Terapia Baseada em Transplante de Células e Tecidos
3.
Curr Issues Mol Biol ; 46(1): 842-855, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275668

RESUMO

Due to the scientific success of in vitro and in vivo model studies, the interest in using mesenchymal stromal cells (MSCs) for the treatment of orthopaedic conditions is growing. In the context of osteoarthritis (OA), MSCs, and, in particular, those derived from adipose tissues (ASCs), have found broader access to clinical use as active components of minimally manipulated orthobiologics, as well as clinically expanded cell preparations, or to collect their released factors (secretome) for cell-free approaches. In this regard, while both inflammatory priming and starvation are common strategies used to empower cell potency or collect the secretome, respectively, little is known about the possible influence of these approaches on the stability of housekeeping genes (HKGs) for molecular studies able to fingerprint cell phenotype or potency. In this report, the reliability of five commonly used HKGs (ACTB, B2M, GAPDH, HPRT1 and RPLP0) was tested in ASCs cultured under standard protocol after inflammatory priming or starvation. Gene expression data were computed with four different applets able to rank genes depending on their stability in either single or combined conditions. The obtained final ranking suggests that for each treatment, a specific HKG is needed, and that starvation is the condition with the stronger effect on HKGs' stability and, therefore, reliability. The normalization effect of proper HKGs' use was then validated on three genes involved in OA and whose product is released by ASCs. Overall, data presented herein confirm that the choice of the best HKG has to be carefully considered and that each specific condition has to be tested to identify the most reliable candidate.

4.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247858

RESUMO

Among the available therapeutics for the conservative treatment of osteoarthritis (OA), mesenchymal stromal cells (MSCs)-based products appear to be the most promising. Alongside minimally manipulated cell-based orthobiologics, where MSCs are the engine of the bioactive properties, cell expansion under good manufacturing practice (GMP) settings is actively studied to obtain clinical-grade pure populations able to concentrate the biological activity. One of the main characteristics of GMP protocols is the use of clinical-grade reagents, including the recently released serum-free/xeno-free (SFM/XFM) synthetic media, which differ significantly from the traditional reagents like those based on fetal bovine serum (FBS). As SFM/XFM are still poorly characterized, a main lack is the notion of reliable housekeeping genes (HKGs) for molecular studies, either standalone or in combination with standard conditions. Indeed, the aim of this work was to test the stability of five commonly used HKGs (ACTB, EF1A, GAPDH, RPLP0, and TBP) in adipose-derived MSCs (ASCs) cultivated in two commercially available SFM/XFM and to compare outcomes with those obtained in FBS. Four different applets widely recognized by the scientific community (NormFinder, geNorm, comparative ΔCt method, and BestKeeper) were used and data were merged to obtain a final stability order. The analysis showed that cells cultured in both synthetic media had a similar ranking for HKGs stability (GAPDH being best), albeit divergent from FBS expanded products (EF1A at top). Moreover, it was possible to identify specific HKGs for side by side studies, with EF1A/TBP being the most reliable normalizers for single SFM/XFM vs. FBS cultured cells and TBP the best one for a comprehensive analysis of all samples. In addition, stability of HKGs was donor-dependent. The normalization effect on selected genes coding for factors known to be involved in OA pathology, and whose amount should be carefully considered for the selection of the most appropriate MSC-based treatment, showed how HKGs choice might affect the perceived amount for the different media or donor. Overall, this work confirms the impact of SFM/XFM conditions on HKGs stability performance, which resulted similarly for both synthetic media analyzed in the study.


Assuntos
Células-Tronco Mesenquimais , Osteoartrite , Humanos , Genes Essenciais , Meios de Cultura Livres de Soro , Adiposidade , Obesidade , Meios de Cultura/farmacologia , Osteoartrite/genética , Osteoartrite/terapia
5.
BMC Musculoskelet Disord ; 24(1): 647, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37573322

RESUMO

BACKGROUND: Knee osteoarthritis (OA) is a progressive and degenerative condition. Several pharmacological and non-pharmacological treatments are able to improve the OA symptoms and the structural characteristics of the affected joints. Among these, infiltrative therapy with hyaluronic acid (HA) is the most used and consolidated procedure for the pain management. The addition of skin conditioning peptides to HA promotes the cartilage remodeling processes and a better permeation of the HA-based gel containing a peptide mixture, CR500®. Furthermore, the topic route of administration is convenient over the routinely used intra-articular injective procedures. In this study, the effectiveness of CR500® was evaluated in terms of improvement of the algo-functional symptoms related to unilateral knee OA. METHODS: 38 mild and moderate OA patients were enrolled at a screening visit (V-1), treated at baseline visit (V1), and then continued the topical application of CR500® twice a week for 4 weeks, and followed-up for 3 visits (V2-V4) from week 2 to 4. Lequesne Knee Index (LKI) and Knee injury and Osteoarthritis Outcome Score (KOOS) were collected. Synovial fluid was collected and used for the quantification of neoepitope of type II collagen (C2C), C-terminal telopeptide of type II collagen (CTX-II), type II collagen propeptide (CPII), tumor necrosis factor alpha (TNFα) and HA. The expression of CD11c and CD206 was evaluated on cell pellets. RESULTS: Three patients were excluded, thus 35 patients were included in the analysis. The treatment with CR500® was safe and well tolerated, with 7.9% patients had mild adverse events, not related to the device. The LKI total score showed a significant decrease from V1 to V4. KOOS score also showed a significant improvement of patient condition at V2, V3 and V4 in comparison with V1 for all subscales, except for KOOS sport subscale which improved only from V3. At V1 a negative correlation among KOOS pain subscale values and C2C, CPII and TNFα levels was observed, as well as a positive correlation between KOOS pain subscale and CD11c/CD206 ratio. CONCLUSION: CR500® is safe and appear to be effective in improving pain and function in OA patients during the 4 weeks of treatment. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT05661162. This trial was registered on 22/12/2022.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/induzido quimicamente , Colágeno Tipo II , Fator de Necrose Tumoral alfa , Resultado do Tratamento , Ácido Hialurônico , Dor/tratamento farmacológico , Injeções Intra-Articulares
6.
J Pers Med ; 13(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37373906

RESUMO

BACKGROUND: The identification of synovial fluid (SF) biomarkers that could anticipate the diagnosis of osteoarthritis (OA) is gaining increasing importance in orthopaedic clinical practice. This controlled trial aims to assess the differences between the SF proteome of patients affected by severe OA undergoing Total Knee Replacement (TKR) compared to control subjects (i.e., subjects younger than 35, undergoing knee arthroscopy for acute meniscus injury). METHODS: The synovial samples were collected from patients with Kellgren Lawrence grade 3 and 4 knee osteoarthritis undergoing THR (study group) and young patients with meniscal tears and no OA signs undergoing arthroscopic surgery (control group). The samples were processed and analyzed following the protocol defined in our previous study. All of the patients underwent clinical evaluation using the International Knee Documentation Committee (IKDC) subjective knee evaluation (main outcome), Knee Society Clinical Rating System (KSS), Knee injury and Osteoarthritis Outcome Score (KOOS), and Visual Analogue Scale (VAS) for pain. The drugs' assumptions and comorbidities were recorded. All patients underwent preoperative serial blood tests, including complete blood count and C-Reactive Protein (CRP). RESULTS: The synovial samples' analysis showed a significantly different fibrinogen beta chain (FBG) and alpha-enolase 1 (ENO1) concentration in OA compared to the control samples. A significant correlation between clinical scores, FBG, and ENO1 concentration was observed in osteoarthritic patients. CONCLUSIONS: Synovial fluid FBG and ENO1 concentrations are significantly different in patients affected by knee OA compared with non-OA subjects.

7.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768948

RESUMO

Osteoarthritis (OA) is a chronic disease characterized by joint tissue disruption and inflammation with a paucity of therapeutic options. Chondrocyte in vitro models are commonly used as the first step in evaluating new approaches and rely on the stimulation of an OA-like phenotype with inflammation often the method of choice. Inflammatory priming is frequently based on cytokines used at concentrations very far from the reality in the patients' synovial fluid (SF). The aim of this work was to compare the transcriptional response of chondrocytes to different inflammatory conditions: the high levels of IL1ß that are used for standardized inflammation protocols, OA-SF, IL1ß, IL6 and IFNγ at SF-like concentrations both individually and simultaneously to mimic a simplified "in vitro" SF. Both high IL1ß and OA-SF strongly influenced chondrocytes, while SF-like concentrations of cytokines gave weak (IL1ß alone or in combination) or no (IL6 and IFNγ alone) outcomes. Chondrocytes under the two most powerful polarizing conditions had a clearly distinct fingerprint, with only a shared albeit molecularly divergent effect on ECM stability, with IL1ß mainly acting on ECM degrading enzymes and OA-SF accounting for a higher turnover in favor of fibrous collagens. Moreover, OA-SF did not induce the inflammatory response observed with IL1ß. In conclusion, although partially similar in the endpoint phenotype, this work intends to encourage reflection on the robustness of inflammation-based in vitro OA models for molecular studies on chondrocytes.


Assuntos
Osteoartrite , Líquido Sinovial , Humanos , Condrócitos , Interleucina-6/genética , Osteoartrite/tratamento farmacológico , Citocinas/uso terapêutico , Inflamação
8.
Cells ; 11(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497116

RESUMO

Nowadays, the real need in orthopedic research is to strictly validate advanced regenerative medicine approaches in preclinical models, with the hope that this unique and straightforward approach can facilitate a safe and effective translation into everyday clinical practice [...].


Assuntos
Medicina Regenerativa , Pesquisa Translacional Biomédica , Terapia Baseada em Transplante de Células e Tecidos , Pesquisa
9.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555578

RESUMO

Bone-marrow-mesenchymal-stromal-cells (BMSCs)- and platelet-rich-plasma (PRP)-based therapies have shown potential for treating osteoarthritis (OA). Recently, the combination of these two approaches was proposed, with results that overcame those observed with the separate treatments, indicating a possible role of PRP in ameliorating BMSCs' regenerative properties. Since a molecular fingerprint of BMSCs cultivated in the presence of PRP is missing, the aim of this study was to characterize the secretome in terms of soluble factors and extracellular-vesicle (EV)-embedded miRNAs from the perspective of tissues, pathways, and molecules which frame OA pathology. One hundred and five soluble factors and one hundred eighty-four EV-miRNAs were identified in the PRP-treated BMSCs' secretome, respectively. Several soluble factors were related to the migration of OA-related immune cells, suggesting the capacity of BMSCs to attract lympho-, mono-, and granulocytes and modulate their inflammatory status. Accordingly, several EV-miRNAs had an immunomodulating role at both the single-factor and cell level, together with the ability to target OA-characterizing extracellular-matrix-degrading enzymes and cartilage destruction pathways. Overall, anti-inflammatory and protective signals far exceeded inflammation and destruction cues for cartilage, macrophages, and T cells. This study demonstrates that BMSCs cultivated in the presence of PRP release therapeutic molecules and give molecular ground for the use of this combined and innovative therapy for OA treatment.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Plasma Rico em Plaquetas , Humanos , Secretoma , Osteoartrite/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Anti-Inflamatórios/metabolismo , Células-Tronco Mesenquimais/metabolismo , Plasma Rico em Plaquetas/metabolismo
10.
Biology (Basel) ; 11(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36358333

RESUMO

Bone marrow-derived mesenchymal stromal cells (BMSCs)-based therapies show a great potential to manage inflammation and tissue degeneration in osteoarthritis (OA) patients. Clinical trials showed the ability to manage pain and activation of immune cells and allowed restoration of damaged cartilage. To date, a molecular fingerprint of BMSC-secreted molecules in OA joint conditions able to support clinical outcomes is missing; the lack of that molecular bridge between BMSC activity and clinical results hampers clinical awareness and translation into practice. In this study, BMSCs were cultured in synovial fluid (SF) obtained from OA patients and, for the first time, a thorough characterization of soluble factors and extracellular vesicles (EVs)-embedded miRNAs was performed in this condition. Molecular data were sifted through the sieve of molecules and pathways characterizing the OA phenotype in immune cells and joint tissues. One-hundred and twenty-five secreted factors and one-hundred and ninety-two miRNAs were identified. The combined action of both types of molecules was shown to, first, foster BMSCs interaction with the most important OA immune cells, such as macrophages and T cells, driving their switch towards an anti-inflammatory phenotype and, second, promote cartilage homeostasis assisting chondrocyte proliferation and attenuating the imbalance between destructive and protective extracellular matrix-related players. Overall, molecular data give an understanding of the clinical results observed in OA patients and can enable a faster translation of BMSC-based products into everyday clinical practice.

11.
Cells ; 11(21)2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36359897

RESUMO

Bone-marrow-derived mesenchymal stromal cells (BMSCs) showed therapeutic potential in the treatment of musculoskeletal diseases, including osteoarthritis (OA). Their soluble mediators and extracellular vesicles (EVs), which make up the secretome, suppress immune response, attenuate inflammation and promote cartilage repair. EVs, as well as the whole secretome, have been investigated as cell free approaches for OA although, to date, a disease-tailored molecular fingerprint is missing. In this study, soluble mediators and miRNAs were sifted in the BMSCs' secretome and EVs, respectively, and analyzed in the frame of cell types and factors involved in OA. The majority of identified molecules repress the activation of immune cells and the production of OA-related inflammatory mediators, as well as promote cartilage protection by acting on both chondrocytes homeostasis and extracellular matrix-degrading enzymes. These data provide the molecular ground for the therapeutic potential of BMSCs for regenerative applications for OA and support the use of secretome or EVs as cell-free applications in joint diseases.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Osteoartrite , Humanos , Medula Óssea , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Osteoartrite/terapia , Osteoartrite/metabolismo , Imunidade
12.
Front Med (Lausanne) ; 9: 992386, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36314003

RESUMO

The purpose of the present study is to predict by bioinformatics the activity of the extracellular vesicle (EV)-embedded micro RNA (miRNAs) secreted by cartilage cells (CCs), adipose tissue-derived- (ASCs), and bone marrow-derived stem cells (BMSCs) and verify their immunomodulatory potential supporting our bioinformatics findings to optimize the autologous cell-based therapeutic strategies for osteoarthritis (OA) management. Cells were isolated from surgical waste tissues of three patients who underwent total hip replacement, expanded and the EVs were collected. The expression of EV-embedded miRNA was evaluated with the QuantStudio 12 K Flex OpenArray® platform. Mientournet and ingenuity pathway analysis (IPA) were used for validated target prediction analysis and to identify miRNAs involved in OA and inflammation. Cells shared the expression of 325 miRNAs embedded in EVs and differed for the expression of a small number of them. Mienturnet revealed no results for miRNAs selectively expressed by ASCs, whereas miRNA expressed by CCs and BMSCs were putatively involved in the modulation of cell cycle, senescence, apoptosis, Wingless and Int-1 (Wnt), transforming growth factor beta (TGFß), vascular endothelial growth factor (VEGF), Notch, Hippo, tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1ß), insulin like growth factor 1 (IGF-1), RUNX family transcription factor 2 (RUNX2), and endochondral ossification pathways. Cartilage homeostasis, macrophages and T cells activity and inflammatory mediators were identified by IPA as targets of the miRNAs found in all the cell populations. Co-culture tests on macrophages and T cells confirmed the immuno-modulatory ability of CCs, ASCs, and BMSCs. The study findings support the rationale behind the use of cell-based therapy for the treatment of OA.

13.
Front Immunol ; 13: 960909, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052081

RESUMO

Amniotic mesenchymal stromal cells (hAMSCs) have unique immunomodulatory properties demonstrated in vitro and in vivo in various diseases in which the dysregulated immune system plays a major role. The immunomodulatory and pro-regenerative effects of MSCs, among which hAMSCs lie in the bioactive factors they secrete and in their paracrine activity, is well known. The mix of these factors (i.e., secretome) can be either freely secreted or conveyed by extracellular vesicles (EV), thus identifying two components in the cell secretome: EV-free and EV fractions. This study aimed to discern the relative impact of the individual components on the immunomodulatory action of the hAMSC secretome in order to obtain useful information for implementing future therapeutic approaches using immunomodulatory therapies based on the MSC secretome. To this aim, we isolated EVs from the hAMSC secretome (hAMSC-CM) by ultracentrifugation and validated the vesicular product according to the International Society for Extracellular Vesicles (ISEV) criteria. EVs were re-diluted in serum-free medium to maintain the EV concentration initially present in the original CM. We compared the effects of the EV-free and EV fractions with those exerted by hAMSC-CM in toto on the activation and differentiation of immune cell subpopulations belonging to both the innate and adaptive immune systems. We observed that the EV-free fraction, similar to hAMSC-CM in toto, a) decreases the proliferation of activated peripheral blood mononuclear cells (PBMC), b) reduces the polarization of T cells toward inflammatory Th subsets, and induces the induction of regulatory T cells; c) affects monocyte polarization to antigen-presenting cells fostering the acquisition of anti-inflammatory macrophage (M2) markers; and d) reduces the activation of B lymphocytes and their maturation to plasma cells. We observed instead that all investigated EV fractions, when used in the original concentrations, failed to exert any immunomodulatory effect, even though we show that EVs are internalized by various immune cells within PBMC. These findings suggest that the active component able to induce immune regulation, tested at original concentrations, of the hAMSC secretome resides in factors not conveyed in EVs. However, EVs isolated from hAMSC could exert actions on other cell types, as reported by others.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Vesículas Extracelulares/metabolismo , Imunomodulação , Leucócitos Mononucleares , Células-Tronco Mesenquimais/metabolismo , Secretoma
14.
Pharmaceutics ; 14(7)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35890296

RESUMO

In regenerative medicine related to orthopedic conditions, mesenchymal stromal cells (MSCs) and their extracellular vesicles (EVs) have been proposed as innovative clinical options. The definition of EV-shuttled signals and their modulation under orthopedic settings, such as osteoarthritis (OA), is crucial for MSC-related research, both for basic science and for use in clinical settings, either as therapeutics or as producers of cell-free products such as EVs or secretome. The objective of this work is to compare the literature available on high-throughput EV-miRNA data obtained from adipose-derived MSCs (ASCs) in standard conditions or cultured in high levels of IFNγ, low-level inflammatory conditions mimicking OA synovial fluid (SF), and OA-SF. The first result was that both IFNγ and low-level inflammatory treatment led to an increase, whereas SF led to a reduction in EV release. Second, more than 200 EV-miRNAs were found to be shared across the different conditions. After a bioinformatics search through experimentally validated and OA-related targets, pathways and tissues, several miRNAs resulted in the restoration of cartilage and synovium stability and the homeostasis of inflammatory cells, including macrophages, promoting their switch towards an M2 anti-inflammatory phenotype. Third, IFNγ and especially SF culturing were able to modulate the overall EV-miRNA fingerprint, although the main molecular messages related to OA resulted conserved between treatments with the majority of modulations within 2-fold range. In conclusion, ASC EV-miRNAs may be modulated in their overall landscape by OA-related culturing conditions albeit resulted largely stable in their specific OA-protective signals allowing for a faster clinical translation of these new cell-free therapies for joint diseases.

15.
J Clin Med ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456324

RESUMO

The use of microfragmented adipose tissue (µFAT) for the treatment of musculoskeletal disorders, especially osteoarthritis (OA), is gaining popularity, following positive results reported in recent case series and clinical trials. Although these outcomes were postulated to rely on paracrine signals, to date, a thorough fingerprint of released molecules is largely missing. The purpose of this study was to first characterize both structure and cell content of unprocessed lipoaspirate (LA) and µFAT, and further identify and frame the array of signaling factors in the context of OA disease, by means of high throughput qRT-PCR for extracellular-vesicle (EV) embedded miRNAs and proteomics for tissue and secreted factors. Cell count showed reduction of blood cells in µFAT, confirmed by histological and flow cytometry analyses, that also showed a conserved presence of structural, endothelial and stromal components and pericytes. In the secretome, 376 and 381 EV-miRNAs in LA and µFAT, respectively, were identified. In particular, most abundant and µFAT upregulated EV-miRNAs were mainly recapitulating those already reported as ASC-EVs-specific, with crucial roles in cartilage protection and M2 macrophage polarization, while only a scarce presence of those related to blood cells emerged. Furthermore, secretome proteomic analysis revealed reduction in µFAT of acute phase factors driving OA progression. Taken together, these results suggest that processing of LA into µFAT allows for removal of blood elements and maintenance of tissue structure and stromal cell populations, and possibly the increase of OA-protective molecular features. Thus, microfragmentation represents a safe and efficient method for the application of adipose tissue properties in the frame of musculoskeletal disorders.

16.
J Exp Orthop ; 9(1): 31, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394237

RESUMO

PURPOSE: The aim of this systematic review is to explore the current available knowledge about tendon disorders and orthobiologics derived by preclinical experiments to evaluate their role and efficacy in the different stages and conditions related to the tendon healing processes. METHODS: The systematic review was performed according to the PRISMA guidelines. Different electronic databases (MEDLINE, Web of Science, EMBASE) were searched for studies investigating orthobiologics (PRP and cell-based products from adipose tissue or bone marrow) in animal models or veterinary clinical trials for tendon pathologies (complete/partial tendon ruptures, rotator cuff tears, tendinopathy, enthesis-related injuries). Data regarding the specific product used, the treatment site/pathology, the host and the model were collected. The results were classified into the following categories: histological, biomechanical, molecular and imaging. RESULTS: A large pool of preclinical studies on tendon disorders have been found on platelet-rich plasma (PRP), while data about stromal vascular fraction (SVF) and bone marrow concentrate (BMAC) are still limited and frequently focused on expanded cells, rather than orthobiologics prepared at the point of care. The effect of PRP is related to an acceleration of the healing process, without improvements in the final structure and properties of repaired tendon. Cell-based products have been reported to produce more durable results, but the level of evidence is currently insufficient to draw clear indications. CONCLUSIONS: The preclinical results about orthobiologics applications to tendon pathologies would support the rationale of their clinical use and encourage the performance of clinical trials aimed to confirm these data in human subjects.

18.
Biomolecules ; 12(2)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35204816

RESUMO

Bone-marrow-derived stromal cells (BMSCs) have emerged as promising therapeutic option for the treatment of osteoarthritis (OA) due to their tissue regenerative and anti-inflammatory features. BMSCs' clinical potential is mainly ascribed to their released factors and extracellular vesicles (EVs), whose therapeutic portfolio may be modulated by the environment in vivo or specific priming in vitro. Within the array of molecules shaping EVs' power, miRNAs are considered privileged players. In this frame, a correct EV-miRNA detection and quantification is mandatory to understand and possibly boost BMSCs potential, either when envisioned as cell therapeutics or when proposed as producer of cell-free and clinical grade EVs. The aim of this study is to identify reliable reference genes (RGs) to study miRNAs in BMSC-EVs cultivated under standard or OA synovial fluid (OA-SF). miR-23a-3p and miR-221-3p emerged as the best candidates, respectively. Moreover, when both conditions were analyzed together, miR-24-3p resulted the most stable RGs, allowing for a sharper comparison of EVs content, further validated on the OA-related miRNA-193b-5p. The different RG stability ranking depending on the culturing conditions, as well as its divergence with respect to adipose (ASCs) and amniotic (hAMSCs) MSCs, confirm that miRNA RG selection in EVs is a mandatory step and that the identification of the most reliable candidate is greatly depending on the cell type and culturing/environmental conditions.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Osteoartrite , Medula Óssea/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Líquido Sinovial
19.
Int Orthop ; 46(2): 391-400, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727209

RESUMO

PURPOSE: The aims of the present study were: (1) to characterize the bone-marrow aspirate (BMA) obtained with a centrifuge-free process, employing a dedicated aspiration device; (2) to test the in vitro efficacy of BMA in a model of cartilage inflammation; and (3) to report the preliminary clinical results in a small cohort of patients affected by knee OA. METHODS: Ten patients (4 M, 6 W; mean age: 51.9 ± 9.2 yy) affected by mild to moderate unicompartmental knee OA (KL grade 2-3) were treated by intra-articular and subchondral injections of BMA obtained by a centrifuge-free process. To evaluate the effectiveness of the device in harvesting mesenchymal stem cells (MSCs), samples of the obtained BMA were tested by flow cytometry before and after subculture; BMA ability to counteract inflammation was also tested in an in vitro model of cartilage cell inflammation, evaluating the expression of MMP1, MMP3, TGFß and TIMP-1 by real-time PCR. Patients were also evaluated up to two years' follow-up by using: VAS for pain, IKDC-subjective and KOOS scores. RESULTS: The laboratory analysis showed that BMSCs accounted for 0.011% of BMA cells, similar to what had been expected in native bone marrow. The paracrine activity of BMA was able to reduce in vitro the catabolic response of human chondrocyte, as shown by the decrease in metalloproteases concentration and increase in anti-inflammatory mediators. Moreover, the clinical evaluation showed significant improvements in all scores adopted, with stable results up to two years. CONCLUSION: The present data showed the effectiveness of the study device to harvest pure bone marrow with minimal peripheral blood contamination. The relevant content of MSCs resulted in the ability to counteract the catabolic cascade through a paracrine action. The clinical outcomes in patients affected by unicompartmental knee OA were encouraging in terms of pain reduction and functional improvement up to mid-term evaluation.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Osteoartrite do Joelho , Adulto , Medula Óssea , Células da Medula Óssea , Humanos , Injeções Intra-Articulares , Transplante de Células-Tronco Mesenquimais/métodos , Pessoa de Meia-Idade , Osteoartrite do Joelho/terapia , Projetos Piloto , Resultado do Tratamento
20.
Front Bioeng Biotechnol ; 9: 711964, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616717

RESUMO

Our understanding of tendon biology continues to evolve, thus leading to opportunities for developing novel, evidence-based effective therapies for the treatment of tendon disorders. Implementing the knowledge of tendon stem/progenitor cells (TSPCs) and assessing their potential in enhancing tendon repair could fill an important gap in this regard. We described different molecular and phenotypic profiles of TSPCs modulated by culture density, as well as their multipotency and secretory activities. Moreover, in the same experimental setting, we evaluated for different responses to inflammatory stimuli mediated by TNFα and IFNγ. We also preliminarily investigated their immunomodulatory activity and their role in regulating degradation of substance P. Our findings indicated that TSPCs cultured at low density (LD) exhibited cobblestone morphology and a reduced propensity to differentiate. A distinctive immunophenotypic profile was also observed with high secretory and promising immunomodulatory responses when primed with TNFα and IFNγ. In contrast, TSPCs cultured at high density (HD) showed a more elongated fibroblast-like morphology, a greater adipogenic differentiation potential, and a higher expression of tendon-related genes with respect to LD. Finally, HD TSPCs showed immunomodulatory potential when primed with TNFα and IFNγ, which was slightly lower than that shown by LD. A shift from low to high culture density during TSPC expansion demonstrated intermediate features confirming the cellular adaptability of TSPCs. Taken together, these experiments allowed us to identify relevant differences in TSPCs based on culture conditions. This ability of TSPCs to acquire distinguished morphology, phenotype, gene expression profile, and functional response advances our current understanding of tendons at a cellular level and suggests responsivity to cues in their in situ microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA