Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunother Cancer ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631709

RESUMO

BACKGROUND: Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS: To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS: Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS: The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.


Assuntos
Arenavirus , Neoplasias , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Proteínas E7 de Papillomavirus , Arenavirus/metabolismo , Neoplasias/terapia , Modelos Animais de Doenças , Terapia de Imunossupressão , Microambiente Tumoral
2.
Front Oncol ; 11: 732166, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722273

RESUMO

Engineered viral vectors represent a promising strategy to trigger antigen-specific antitumor T cell responses. Arenaviruses have been widely studied because of their ability to elicit potent and protective T cell responses. Here, we provide an overview of a novel intravenously administered, replication-competent, non-lytic arenavirus-based vector technology that delivers tumor antigens to induce antigen-specific anti-cancer T cell responses. Preclinical studies in mice and cell culture experiments with human peripheral blood mononuclear cells demonstrate that arenavirus vectors preferentially infect antigen-presenting cells. This, in conjunction with a non-lytic functional activation of the infected antigen-presenting cells, leads to a robust antigen-specific CD8+ T cell response. T cell migration to, and infiltration of, the tumor microenvironment has been demonstrated in various preclinical tumor models with vectors encoding self- and non-self-antigens. The available data also suggest that arenavirus-based vector therapy can induce immunological memory protecting from tumor rechallenge. Based on promising preclinical data, a phase 1/2 clinical trial was initiated and is currently ongoing to test the activity and safety of arenavirus vectors, HB-201 and HB-202, created using lymphocytic choriomeningitis virus and Pichinde virus, respectively. Both vectors have been engineered to deliver non-oncogenic versions of the human papilloma virus 16 (HPV16) antigens E7 and E6 and will be injected intravenously with or without an initial intratumoral dose. This dose escalation/expansion study is being conducted in patients with recurrent or metastatic HPV16+ cancers. Promising preliminary data from this ongoing clinical study have been reported. Immunogenicity data from several patients demonstrate that a single injection of HB-201 or HB-202 monotherapy is highly immunogenic, as evidenced by an increase in inflammatory cytokines/chemokines and the expansion of antigen-specific CD8+ T cell responses. This response can be further enhanced by alternating injections of HB-202 and HB-201, which has resulted in frequencies of circulating HPV16 E7/E6-specific CD8+ T cells of up to 40% of the total CD8+ T cell compartment in peripheral blood in analyses to date. Treatment with intravenous administration also resulted in a disease control rate of 73% among 11 evaluable patients with head and neck cancer dosed every three weeks, including 2 patients with a partial response.

3.
Cell Rep Med ; 2(3): 100209, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33763654

RESUMO

Therapeutic vaccination regimens inducing clinically effective tumor-specific CD8+ T lymphocyte (CTL) responses are an unmet medical need. We engineer two distantly related arenaviruses, Pichinde virus and lymphocytic choriomeningitis virus, for therapeutic cancer vaccination. In mice, life-replicating vector formats of these two viruses delivering a self-antigen in a heterologous prime-boost regimen induce tumor-specific CTL responses up to 50% of the circulating CD8 T cell pool. This CTL attack eliminates established solid tumors in a significant proportion of animals, accompanied by protection against tumor rechallenge. The magnitude of CTL responses is alarmin driven and requires combining two genealogically distantly related arenaviruses. Vector-neutralizing antibodies do not inhibit booster immunizations by the same vector or by closely related vectors. Rather, CTL immunodominance hierarchies favor vector backbone-targeted responses at the expense of self-reactive CTLs. These findings establish an arenavirus-based immunotherapy regimen that allows reshuffling of immunodominance hierarchies and breaking self-directed tolerance for efficient tumor control.


Assuntos
Vacinas Anticâncer/administração & dosagem , Imunoterapia/métodos , Vírus da Coriomeningite Linfocítica/imunologia , Mastocitoma/terapia , Vírus Pichinde/imunologia , Linfócitos T Citotóxicos/imunologia , Alarminas/genética , Alarminas/imunologia , Animais , Anticorpos Neutralizantes/farmacologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Feminino , Expressão Gênica , Engenharia Genética/métodos , Vetores Genéticos/classificação , Vetores Genéticos/imunologia , Cobaias , Imunização Secundária , Vírus da Coriomeningite Linfocítica/classificação , Vírus da Coriomeningite Linfocítica/genética , Mastocitoma/genética , Mastocitoma/imunologia , Mastocitoma/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Vírus Pichinde/classificação , Vírus Pichinde/genética , Tolerância a Antígenos Próprios , Análise de Sobrevida , Vacinação/métodos
4.
Oncoimmunology ; 9(1): 1809960, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33457095

RESUMO

Infection with human papillomavirus (HPV) is associated with a variety of cancer types and limited therapy options. Therapeutic cancer vaccines targeting the HPV16 oncoproteins E6 and E7 have recently been extensively explored as a promising immunotherapy approach to drive durable antitumor T cell immunity and induce effective tumor control. With the goal to achieve potent and lasting antitumor T cell responses, we generated a novel lymphocytic choriomeningitis virus (LCMV)-based vaccine, TT1-E7E6, targeting HPV16 E6 and E7. This replication-competent vector was stably attenuated using a three-segmented viral genome packaging strategy. Compared to wild-type LCMV, TT1-E7E6 demonstrated significantly reduced viremia and CNS immunopathology. Intravenous vaccination of mice with TT1-E7E6 induced robust expansion of HPV16-specific CD8+ T cells producing IFN-γ, TNF-α and IL-2. In the HPV16 E6 and E7-expressing TC-1 tumor model, mice immunized with TT1-E7E6 showed significantly delayed tumor growth or complete tumor clearance accompanied with prolonged survival. Tumor control by TT1-E7E6 was also achieved in established large-sized tumors in this model. Furthermore, a combination of TT1-E7E6 with anti-PD-1 therapy led to enhanced antitumor efficacy with complete tumor regression in the majority of tumor-bearing mice that were resistant to anti-PD-1 treatment alone. TT1-E7E6 vector itself did not exhibit oncolytic properties in TC-1 cells, while the antitumor effect was associated with the accumulation of HPV16-specific CD8+ T cells with reduced PD-1 expression in the tumor tissues. Together, our results suggest that TT1-E7E6 is a promising therapeutic vaccine for HPV-positive cancers.


Assuntos
Vacinas contra Papillomavirus , Neoplasias do Colo do Útero , Animais , Linfócitos T CD8-Positivos , Feminino , Humanos , Imunoterapia Ativa , Vírus da Coriomeningite Linfocítica , Camundongos , Camundongos Endogâmicos C57BL , Proteínas E7 de Papillomavirus/genética , Vacinas Atenuadas
5.
Nat Commun ; 7: 13781, 2016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28000790

RESUMO

Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, but its molecular heterogeneity hampers the design of targeted therapies. Currently, the only therapeutic option for advanced HCC is Sorafenib, an inhibitor whose targets include RAF. Unexpectedly, RAF1 expression is reduced in human HCC samples. Modelling RAF1 downregulation by RNAi increases the proliferation of human HCC lines in xenografts and in culture; furthermore, RAF1 ablation promotes chemical hepatocarcinogenesis and the proliferation of cultured (pre)malignant mouse hepatocytes. The phenotypes depend on increased YAP1 expression and STAT3 activation, observed in cultured RAF1-deficient cells, in HCC xenografts, and in autochthonous liver tumours. Thus RAF1, although essential for the development of skin and lung tumours, is a negative regulator of hepatocarcinogenesis. This unexpected finding highlights the contribution of the cellular/tissue environment in determining the function of a protein, and underscores the importance of understanding the molecular context of a disease to inform therapy design.


Assuntos
Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Células Cultivadas , Dietilnitrosamina , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Camundongos Knockout , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-raf/genética , Interferência de RNA , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Elife ; 52016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27431613

RESUMO

The RAS pathway is central to epidermal homeostasis, and its activation in tumors or in Rasopathies correlates with hyperproliferation. Downstream of RAS, RAF kinases are actionable targets regulating keratinocyte turnover; however, chemical RAF inhibitors paradoxically activate the pathway, promoting epidermal proliferation. We generated mice with compound epidermis-restricted BRAF/RAF1 ablation. In these animals, transient barrier defects and production of chemokines and Th2-type cytokines by keratinocytes cause a disease akin to human atopic dermatitis, characterized by IgE responses and local and systemic inflammation. Mechanistically, BRAF and RAF1 operate independently to balance MAPK signaling: BRAF promotes ERK activation, while RAF1 dims stress kinase activation. In vivo, JNK inhibition prevents disease onset, while MEK/ERK inhibition in mice lacking epidermal RAF1 phenocopies it. These results support a primary role of keratinocytes in the pathogenesis of atopic dermatitis, and the animals lacking BRAF and RAF1 in the epidermis represent a useful model for this disease.


Assuntos
Dermatite Atópica/patologia , Dermatite Atópica/prevenção & controle , Queratinócitos/fisiologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-raf/metabolismo , Animais , Camundongos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-raf/genética
7.
FEBS Lett ; 581(24): 4767-72, 2007 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-17880946

RESUMO

Suppressor of T-cell receptor signalling 1 and 2 (Sts-1 and 2) negatively regulate the endocytosis of receptor tyrosine kinases. The UBA domain of Sts-2 and SH3-dependent Cbl-binding are required for this function. Sts-1 and -2 also possess a PGM domain, which was recently reported to exhibit tyrosine phosphatase activity. Here, we demonstrate that the PGM of Sts-1, but not of Sts-2, dephosphorylates the EGFR at multiple tyrosines thereby terminating its signalling and endocytosis. In contrast to Sts-2 the UBA of Sts-1 did not contribute significantly to receptor stabilization. Thus, although Sts-1 and Sts-2 are structurally highly homologous and both inhibit ligand-induced EGFR degradation, their mechanisms of action differ significantly. As a consequence, Sts-1-containing receptor complexes are inactive, whereas Sts-2-containing complexes are signalling competent.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Endocitose , Receptores ErbB/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Regulação para Baixo , Humanos , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA