RESUMO
Madagascar is renowned as a global biodiversity hotspot with high levels of microendemism. However, there are few molecular phylogenetic studies of Malagasy birds, particularly for forest-dwelling species, signifying a substantial gap in current measures of species diversity in the absence of genetic data. We evaluated species limits and explored patterns of diversification within the genus Newtonia (Family Vangidae), a group of forest-dwelling songbirds endemic to Madagascar. Our modern systematics approach combined genomic, morphometric, and ecological niche data to analyze the evolutionary history of the group. Our integrative analysis uncovered hidden species-level diversity within N. amphichroa, with two deeply divergent and morphologically distinct lineages isolated in different regions of humid forest. We describe the southern lineage as a new species. Conversely, N. brunneicauda, which we initially hypothesized may harbor cryptic diversity owing to its large distribution spanning a range of habitats, was found to have no distinct lineages and shared haplotypes across much of its distribution. The contrasting diversification patterns between Newtonia lineages may be the result of their elevational tolerances. Newtonia brunneicauda has a broad habitat tolerance and elevational range that appears to have facilitated population expansion and gene flow across the island, limiting opportunities for diversification. On the other hand, N. amphichroa is found predominantly in mid-elevation and montane humid forests, a restriction that appears to have promoted speciation associated with climatic fluctuations during the Pleistocene. Our findings indicate that species diversity of Malagasy forest-dwelling birds may be greater than currently recognized, suggesting an urgent need for further studies to quantify biodiversity in Madagascar's rapidly disappearing native forests.
Assuntos
Biodiversidade , Aves/classificação , Florestas , Filogenia , Animais , Sequência de Bases , Aves/anatomia & histologia , Fluxo Gênico , Loci Gênicos , Haplótipos/genética , Ilhas , Funções Verossimilhança , Madagáscar , Filogeografia , Análise de Componente Principal , Especificidade da EspécieRESUMO
The merger of formerly isolated lineages is hypothesized to occur in vertebrates under certain conditions. However, despite many demonstrated instances of introgression between taxa in secondary contact, examples of lineage mergers are rare. Preliminary mtDNA sequencing of a Malagasy passerine, Xanthomixis zosterops (Passeriformes: Bernieridae), indicated a possible instance of merging lineages. We tested the hypothesis that X. zosterops lineages are merging by comparing mtDNA sequence and microsatellite data, as well as mtDNA sequence data from host-specific feather lice in the genus Myrsidea (Phthiraptera: Menoponidae). Xanthomixis zosterops comprises four deeply divergent, broadly sympatric, cryptic mtDNA clades that likely began diverging approximately 3.6 million years ago. Despite this level of divergence, the microsatellite data indicate that the X. zosterops mtDNA clades are virtually panmictic. Three major phylogroups of Myrsidea were found, supporting previous allopatry of the X. zosterops clades. In combination, the datasets from X. zosterops and its Myrsidea document a potential merger of previously allopatric lineages that likely date to the Pliocene. This represents the first report of sympatric apparent hybridization among more than two terrestrial vertebrate lineages. Further, the mtDNA phylogeographic pattern of X. zosterops, namely the syntopy of more than two deeply divergent cryptic clades, appears to be a novel scenario among vertebrates. We highlight the value of gathering multiple types of data in phylogeographic studies to contribute to the study of vertebrate speciation.