Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cells ; 12(23)2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067122

RESUMO

Cardiovascular complications are major clinical hallmarks of acute and post-acute coronavirus disease 2019 (COVID-19). However, the mechanistic details of SARS-CoV-2 infectivity of endothelial cells remain largely unknown. Here, we demonstrate that the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein shares a similarity with the proline-rich binding ena/VASP homology (EVH1) domain and identified the endoplasmic reticulum (ER) resident calreticulin (CALR) as an S-RBD interacting protein. Our biochemical analysis showed that CALR, via its proline-rich (P) domain, interacts with S-RBD and modulates proteostasis of the S protein. Treatment of cells with the proteasomal inhibitor bortezomib increased the expression of the S protein independent of CALR, whereas the lysosomal/autophagy inhibitor bafilomycin 1A, which interferes with the acidification of lysosome, selectively augmented the S protein levels in a CALR-dependent manner. More importantly, the shRNA-mediated knockdown of CALR increased SARS-CoV-2 infection and impaired calcium homeostasis of human endothelial cells. This study provides new insight into the infectivity of SARS-CoV-2, calcium hemostasis, and the role of CALR in the ER-lysosome-dependent proteolysis of the spike protein, which could be associated with cardiovascular complications in COVID-19 patients.


Assuntos
Calreticulina , Síndrome de COVID-19 Pós-Aguda , Humanos , Cálcio/metabolismo , Calreticulina/metabolismo , Células Endoteliais/metabolismo , Prolina , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Síndrome de COVID-19 Pós-Aguda/metabolismo
2.
Am J Pathol ; 193(10): 1501-1516, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37676196

RESUMO

Chronic kidney disease (CKD) is characterized by the accumulation of uremic toxins and renal tubular damage. Tryptophan-derived uremic toxins [indoxyl sulfate (IS) and kynurenine (Kyn)] are well-characterized tubulotoxins. Emerging evidence suggests that transmembrane and immunoglobulin domain-containing 1 (TMIGD1) protects tubular cells and promotes survival. However, the direct molecular mechanism(s) underlying how these two opposing pathways crosstalk remains unknown. We posited that IS and Kyn mediate tubular toxicity through TMIGD1 and the loss of TMIGD1 augments tubular injury. Results from the current study showed that IS and Kyn suppressed TMIGD1 transcription in tubular cells in a dose-dependent manner. The wild-type CCAAT enhancer-binding protein ß (C/EBPß) enhanced, whereas a dominant-negative C/EBPß suppressed, TMIGD1 promoter activity. IS down-regulated C/EBPß in primary human renal tubular cells. The adenine-induced CKD, unilateral ureteric obstruction, and deoxycorticosterone acetate salt unilateral nephrectomy models showed reduced TMIGD1 expression in the renal tubules, which correlated with C/EBPß expression. C/EBPß levels negatively correlated with the IS and Kyn levels. Inactivation of TMIGD1 in mice significantly lowered acetylated tubulin, decreased tubular cell proliferation, caused severe tubular damage, and worsened renal function. Thus, the current results demonstrate that TMIGD1 protects renal tubular cells from renal injury in different models of CKD and uncovers a novel mechanism of tubulotoxicity of tryptophan-based uremic toxins.


Assuntos
Insuficiência Renal Crônica , Triptofano , Humanos , Animais , Camundongos , Toxinas Urêmicas , Rim/fisiologia , Domínios de Imunoglobulina , Glicoproteínas de Membrana
3.
Mol Metab ; 73: 101744, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245847

RESUMO

OBJECTIVE: Obesity is a complex disorder and is linked to chronic diseases such as type 2 diabetes. Major intrinsically disordered NOTCH2-associated receptor2 (MINAR2) is an understudied protein with an unknown role in obesity and metabolism. The purpose of this study was to determine the impact of Minar2 on adipose tissues and obesity. METHOD: We generated Minar2 knockout (KO) mice and used various molecular, proteomic, biochemical, histopathology, and cell culture studies to determine the pathophysiological role of Minar2 in adipocytes. RESULTS: We demonstrated that the inactivation of Minar2 results in increased body fat with hypertrophic adipocytes. Minar2 KO mice on a high-fat diet develop obesity and impaired glucose tolerance and metabolism. Mechanistically, Minar2 interacts with Raptor, a specific and essential component of mammalian TOR complex 1 (mTORC1) and inhibits mTOR activation. mTOR is hyperactivated in the adipocytes deficient for Minar2 and over-expression of Minar2 in HEK-293 cells inhibited mTOR activation and phosphorylation of mTORC1 substrates, including S6 kinase, and 4E-BP1. CONCLUSION: Our findings identified Minar2 as a novel physiological negative regulator of mTORC1 with a key role in obesity and metabolic disorders. Impaired expression or activation of MINAR2 could lead to obesity and obesity-associated diseases.


Assuntos
Obesidade , Serina-Treonina Quinases TOR , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2 , Células HEK293 , Mamíferos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos/metabolismo , Obesidade/metabolismo , Proteômica , Serina-Treonina Quinases TOR/metabolismo
4.
iScience ; 25(8): 104736, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35942094

RESUMO

Through tightly controlled multilayer mechanisms, vascular endothelial growth factor receptor-2 (VEGFR-2) activation and its downstream signal transduction govern vasculogenesis and pathological angiogenesis, such as tumor angiogenesis. Therefore, it is critical to understand the molecular mechanisms governing VEGFR-2 signal transduction. We report that protein arginine methyltransferase 4 (PRMT4) via its highly conserved EVH1 and PH domain-like N-terminal domain binds to VEGFR-2 and mediates methylation of the juxtamembrane arginine 817 (R817) on VEGFR-2. Methylation of R817 selectively increases phosphorylation of tyrosine 820 (Y820). Phosphorylation of Y820 facilitates the c-Src binding with VEGFR-2 via Src homology domain 2 (SH2). Interfering with the methylation of R817 or phosphorylation of Y820 inhibits VEGFR-2-induced filopodia protrusions, a process that is critical for the core angiogenic responses of VEGFR-2. Methylation of R817 is an important previously unrecognized mechanism of the angiogenic signaling of VEGFR-2, with implications for the development of novel-targeted VEGFR-2 inhibitors.

5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35078919

RESUMO

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Assuntos
Células Endoteliais/virologia , Espaço Extracelular/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Vimentina/metabolismo , Internalização do Vírus , Células A549 , Enzima de Conversão de Angiotensina 2/metabolismo , Técnicas de Cocultura , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Células HEK293 , Humanos , Ligação Proteica
6.
J Clin Invest ; 132(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34752422

RESUMO

Chronic kidney disease (CKD) imposes a strong and independent risk for peripheral artery disease (PAD). While solutes retained in CKD patients (uremic solutes) inflict vascular damage, their role in PAD remains elusive. Here, we show that the dietary tryptophan-derived uremic solutes including indoxyl sulfate (IS) and kynurenine (Kyn) at concentrations corresponding to those in CKD patients suppress ß-catenin in several cell types, including microvascular endothelial cells (ECs), inhibiting Wnt activity and proangiogenic Wnt targets in ECs. Mechanistic probing revealed that these uremic solutes downregulated ß-catenin in a manner dependent on serine 33 in its degron motif and through the aryl hydrocarbon receptor (AHR). Hindlimb ischemia in adenine-induced CKD and IS solute-specific mouse models showed diminished ß-catenin and VEGF-A in the capillaries and reduced capillary density, which correlated inversely with blood levels of IS and Kyn and AHR activity in ECs. An AHR inhibitor treatment normalized postischemic angiogenic response in CKD mice to a non-CKD level. In a prospective cohort of PAD patients, plasma levels of tryptophan metabolites and plasma's AHR-inducing activity in ECs significantly increased the risk of future adverse limb events. This work uncovers the tryptophan metabolite/AHR/ß-catenin axis as a mediator of microvascular rarefaction in CKD patients and demonstrates its targetability for PAD in CKD models.


Assuntos
Membro Posterior/irrigação sanguínea , Indicã/metabolismo , Isquemia/metabolismo , Cinurenina/metabolismo , Insuficiência Renal Crônica/metabolismo , Triptofano/metabolismo , Via de Sinalização Wnt , Idoso , Idoso de 80 Anos ou mais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Humanos , Isquemia/etiologia , Isquemia/patologia , Camundongos , Pessoa de Meia-Idade , Receptores de Hidrocarboneto Arílico/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/patologia
7.
J Biomed Sci ; 28(1): 61, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503512

RESUMO

BACKGROUND: The cell adhesion molecule transmembrane and immunoglobulin (Ig) domain containing1 (TMIGD1) is a novel tumor suppressor that plays important roles in regulating cell-cell adhesion, cell proliferation and cell cycle. However, the mechanisms of TMIGD1 signaling are not yet fully elucidated. RESULTS: TMIGD1 binds to the ERM family proteins moesin and ezrin, and an evolutionarily conserved RRKK motif on the carboxyl terminus of TMIGD1 mediates the interaction of TMIGD1 with the N-terminal ERM domains of moesin and ezrin. TMIGD1 governs the apical localization of moesin and ezrin, as the loss of TMIGD1 in mice altered apical localization of moesin and ezrin in epithelial cells. In cell culture, TMIGD1 inhibited moesin-induced filopodia-like protrusions and cell migration. More importantly, TMIGD1 stimulated the Lysine (K40) acetylation of α-tubulin and promoted mitotic spindle organization and CRISPR/Cas9-mediated knockout of moesin impaired the TMIGD1-mediated acetylation of α-tubulin and filamentous (F)-actin organization. CONCLUSIONS: TMIGD1 binds to moesin and ezrin, and regulates their cellular localization. Moesin plays critical roles in TMIGD1-dependent acetylation of α-tubulin, mitotic spindle organization and cell migration. Our findings offer a molecular framework for understanding the complex functional interplay between TMIGD1 and the ERM family proteins in the regulation of cell adhesion and mitotic spindle assembly, and have wide-ranging implications in physiological and pathological processes such as cancer progression.


Assuntos
Movimento Celular , Glicoproteínas de Membrana/genética , Proteínas dos Microfilamentos/genética , Tubulina (Proteína)/metabolismo , Acetilação , Animais , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo
8.
ACS Cent Sci ; 7(7): 1156-1165, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34341769

RESUMO

As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelia and endothelia. Multiple biochemical assays using a purified recombinant SARS-CoV-2 spike receptor-binding domain (S-RBD) or S1 encompassing both N termal domain and RBD and ectopically expressed CD209L and CD209 revealed that CD209L and CD209 interact with S-RBD. CD209L contains two N-glycosylation sequons, at sites N92 and N361, but we determined that only site N92 is occupied. Removal of the N-glycosylation at this site enhances the binding of S-RBD with CD209L. CD209L also interacts with ACE2, suggesting a role for heterodimerization of CD209L and ACE2 in SARS-CoV-2 entry and infection in cell types where both are present. Furthermore, we demonstrate that human endothelial cells are permissive to SARS-CoV-2 infection, and interference with CD209L activity by a knockdown strategy or with soluble CD209L inhibits virus entry. Our observations demonstrate that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This property is particularly important in tissues where ACE2 has low expression or is absent and may have implications for antiviral drug development.

9.
J Biomed Sci ; 28(1): 35, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962630

RESUMO

BACKGROUND: The cell adhesion molecule IGPR-1 regulates various critical cellular processes including, cell-cell adhesion, mechanosensing and autophagy and plays important roles in angiogenesis and tumor growth; however, the molecular mechanism governing the cell surface levels of IGPR-1 remains unknown. RESULTS: In the present study, we used an in vitro ubiquitination assay and identified ubiquitin E3 ligase NEDD4 and the ubiquitin conjugating enzyme UbcH6 involved in the ubiquitination of IGPR-1. In vitro GST-pulldown and in vivo co-immunoprecipitation assays demonstrated that NEDD4 binds to IGPR-1. Over-expression of wild-type NEDD4 downregulated IGPR-1 and deletion of WW domains (1-4) of NEDD4 revoked its effects on IGPR-1. Knockdown of NEDD4 increased IGPR-1 levels in A375 melanoma cells. Deletion of 57 amino acids encompassing the polyproline rich (PPR) motifs on the C-terminus of IGPR-1 nullified its binding with NEDD4. Furthermore, we demonstrate that NEDD4 promotes K48- and K63-dependent polyubiquitination of IGPR-1. The NEDD4-mediated polyubiquitination of IGPR-1 stimulates lysosomal-dependent degradation of IGPR-1 as the treatment of cells with the lysosomal inhibitors, bafilomycine or ammonium chloride increased IGPR-1 levels ectopically expressed in HEK-293 cells and in multiple endogenously IGPR-1 expressing human skin melanoma cell lines. CONCLUSIONS: NEDD4 ubiquitin E3 ligase binds to and mediates polyubiquitination of IGPR-1 leading to its lysosomal-dependent degradation. NEDD4 is a key regulator of IGPR-1 expression with implication in the therapeutic targeting of IGPR-1 in human cancers.


Assuntos
Antígenos CD28/química , Membrana Celular/metabolismo , Lisossomos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/genética , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Estabilidade Proteica , Ubiquitinação
10.
bioRxiv ; 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32607506

RESUMO

As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelium and endothelium. Multiple biochemical assays using a purified recombinant SARS-CoV-2 spike receptor binding domain (S-RBD) or S1 encompassing both NTB and RBD and ectopically expressed CD209L and CD209 revealed that CD209L and CD209 interact with S-RBD. CD209L contains two N-glycosylation sequons, at sites N92 and N361, but we determined that only site N92 is occupied. Removal of the N-glycosylation at this site enhances the binding of S-RBD with CD209L. CD209L also interacts with ACE2, suggesting a role for heterodimerization of CD209L and ACE2 in SARS-CoV-2 entry and infection in cell types where both are present. Furthermore, we demonstrate that human endothelial cells are permissive to SARS-CoV-2 infection and interference with CD209L activity by knockdown strategy or with soluble CD209L inhibits virus entry. Our observations demonstrate that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This property is particularly important in tissues where ACE2 has low expression or is absent, and may have implications for antiviral drug development.

11.
Am J Pathol ; 191(1): 157-167, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129760

RESUMO

Colorectal cancer (CRC) is a leading nonfamilial cause of cancer mortality among men and women. Although various genetic and epigenetic mechanisms have been identified, the full molecular mechanisms deriving CRC tumorigenesis are not fully understood. This study demonstrates that cell adhesion molecule transmembrane and immunoglobulin domain containing 1 (TMIGD1) are highly expressed in mouse and human normal intestinal epithelial cells. TMIGD1 knockout mice were developed, and the loss of TMIGD1 in mice was shown to result in the development of adenomas in small intestine and colon. In addition, the loss of TMIGD1 significantly impaired intestinal epithelium brush border membrane, junctional polarity, and maturation. Mechanistically, TMIGD1 inhibits tumor cell proliferation and cell migration, arrests cell cycle at the G2/M phase, and induces expression of p21CIP1 (cyclin-dependent kinase inhibitor 1), and p27KIP1 (cyclin-dependent kinase inhibitor 1B) expression, key cell cycle inhibitor proteins involved in the regulation of the cell cycle. Moreover, TMIGD1 is shown to be progressively down-regulated in sporadic human CRC, and its downregulation correlates with poor overall survival. The findings herein identify TMIGD1 as a novel tumor suppressor gene and provide new insights into the pathogenesis of colorectal cancer and a novel potential therapeutic target.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Neoplasias do Colo/metabolismo , Glicoproteínas de Membrana/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Genes Supressores de Tumor/fisiologia , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
12.
Biology (Basel) ; 10(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375175

RESUMO

C-type lectin CD209/DC-SIGN and CD209L/L-SIGN proteins are distinct cell adhesion and pathogen recognition receptors that mediate cellular interactions and recognize a wide range of pathogens, including viruses such as SARS, SARS-CoV-2, bacteria, fungi and parasites. Pathogens exploit CD209 family proteins to promote infection and evade the immune recognition system. CD209L and CD209 are widely expressed in SARS-CoV-2 target organs and can contribute to infection and pathogenesis. CD209 family receptors are highly susceptible to alternative splicing and genomic polymorphism, which may influence virus tropism and transmission in vivo. The carbohydrate recognition domain (CRD) and the neck/repeat region represent the key features of CD209 family proteins that are also central to facilitating cellular ligand interactions and pathogen recognition. While the neck/repeat region is involved in oligomeric dimerization, the CRD recognizes the mannose-containing structures present on specific glycoproteins such as those found on the SARS-CoV-2 spike protein. Considering the role of CD209L and related proteins in diverse pathogen recognition, this review article discusses the recent advances in the cellular and biochemical characterization of CD209 and CD209L and their roles in viral uptake, which has important implications in understanding the host-pathogen interaction, the viral pathobiology and driving vaccine development of SARS-CoV-2.

13.
J Biol Chem ; 295(49): 16691-16699, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32978258

RESUMO

Autophagy plays critical roles in the maintenance of endothelial cells in response to cellular stress caused by blood flow. There is growing evidence that both cell adhesion and cell detachment can modulate autophagy, but the mechanisms responsible for this regulation remain unclear. Immunoglobulin and proline-rich receptor-1 (IGPR-1) is a cell adhesion molecule that regulates angiogenesis and endothelial barrier function. In this study, using various biochemical and cellular assays, we demonstrate that IGPR-1 is activated by autophagy-inducing stimuli, such as amino acid starvation, nutrient deprivation, rapamycin, and lipopolysaccharide. Manipulating the IκB kinase ß activity coupled with in vivo and in vitro kinase assays demonstrated that IκB kinase ß is a key serine/threonine kinase activated by autophagy stimuli and that it catalyzes phosphorylation of IGPR-1 at Ser220 The subsequent activation of IGPR-1, in turn, stimulates phosphorylation of AMP-activated protein kinase, which leads to phosphorylation of the major pro-autophagy proteins ULK1 and Beclin-1 (BECN1), increased LC3-II levels, and accumulation of LC3 punctum. Thus, our data demonstrate that IGPR-1 is activated by autophagy-inducing stimuli and in response regulates autophagy, connecting cell adhesion to autophagy. These findings may have important significance for autophagy-driven pathologies such cardiovascular diseases and cancer and suggest that IGPR-1 may serve as a promising therapeutic target.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Antígenos CD28/metabolismo , Adesão Celular , Motivos de Aminoácidos , Animais , Autofagia/efeitos dos fármacos , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Antígenos CD28/química , Antígenos CD28/genética , Adesão Celular/efeitos dos fármacos , Células HEK293 , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/farmacologia , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Primatas , RNA Guia de Cinetoplastídeos/metabolismo , Sirolimo/farmacologia , Especificidade por Substrato
14.
Brain Commun ; 2(1): fcaa047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954300

RESUMO

Parkinson's disease is the second most common human neurodegenerative disease. Motor control impairment represents a key clinical hallmark and primary clinical symptom of the disease, which is further characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta and the accumulation of α-synuclein aggregations. We have identified major intrinsically disordered NOTCH2-associated receptor 2 encoded by KIAA1024L, a previously uncharacterized protein that is highly conserved in humans and other species. In this study, we demonstrate that major intrinsically disordered NOTCH2-associated receptor 2 expression is significantly down-regulated in the frontal lobe brain of patients with Lewy body dementia. Major intrinsically disordered NOTCH2-associated receptor 2 is predominantly expressed in brain tissue and is particularly prominent in the midbrain. Major intrinsically disordered NOTCH2-associated receptor 2 interacts with neurogenic locus notch homologue protein 2 and is localized at the endoplasmic reticulum compartments. We generated major intrinsically disordered NOTCH2-associated receptor 2 knockout mouse and demonstrated that the loss of major intrinsically disordered NOTCH2-associated receptor 2 in mouse results in severe motor deficits such as rigidity and bradykinesia, gait abnormalities, reduced spontaneous locomotor and exploratory behaviour, symptoms that are highly similar to those observed in human Parkinson's spectrum disorders. Analysis of the major intrinsically disordered NOTCH2-associated receptor 2 knockout mice brain revealed significant anomalies in neuronal function and appearance including the loss of tyrosine hydroxylase-positive neurons in the pars compacta, which was accompanied by an up-regulation in α-synuclein protein expression. Taken together, these data demonstrate a previously unknown function for major intrinsically disordered NOTCH2-associated receptor 2 in the pathogenesis of Parkinson's spectrum disorders.

15.
Cells ; 9(7)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660065

RESUMO

The newly emergent novel coronavirus disease 2019 (COVID-19) outbreak, which is caused by SARS-CoV-2 virus, has posed a serious threat to global public health and caused worldwide social and economic breakdown. Angiotensin-converting enzyme 2 (ACE2) is expressed in human vascular endothelium, respiratory epithelium, and other cell types, and is thought to be a primary mechanism of SARS-CoV-2 entry and infection. In physiological condition, ACE2 via its carboxypeptidase activity generates angiotensin fragments (Ang 1-9 and Ang 1-7), and plays an essential role in the renin-angiotensin system (RAS), which is a critical regulator of cardiovascular homeostasis. SARS-CoV-2 via its surface spike glycoprotein interacts with ACE2 and invades the host cells. Once inside the host cells, SARS-CoV-2 induces acute respiratory distress syndrome (ARDS), stimulates immune response (i.e., cytokine storm) and vascular damage. SARS-CoV-2 induced endothelial cell injury could exacerbate endothelial dysfunction, which is a hallmark of aging, hypertension, and obesity, leading to further complications. The pathophysiology of endothelial dysfunction and injury offers insights into COVID-19 associated mortality. Here we reviewed the molecular basis of SARS-CoV-2 infection, the roles of ACE2, RAS signaling, and a possible link between the pre-existing endothelial dysfunction and SARS-CoV-2 induced endothelial injury in COVID-19 associated mortality. We also surveyed the roles of cell adhesion molecules (CAMs), including CD209L/L-SIGN and CD209/DC-SIGN in SARS-CoV-2 infection and other related viruses. Understanding the molecular mechanisms of infection, the vascular damage caused by SARS-CoV-2 and pathways involved in the regulation of endothelial dysfunction could lead to new therapeutic strategies against COVID-19.


Assuntos
Infecções por Coronavirus/patologia , Endotélio Vascular/metabolismo , Pneumonia Viral/patologia , Sistema Renina-Angiotensina , Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/isolamento & purificação , COVID-19 , Moléculas de Adesão Celular/metabolismo , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Interações entre Hospedeiro e Microrganismos , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , SARS-CoV-2 , Transdução de Sinais
16.
Am J Pathol ; 190(3): 602-613, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32113662

RESUMO

Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear ß-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear ß-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APCΔ14/+) mouse model. Haploinsufficient c-Cbl mice (APCΔ14/+ c-Cbl+/-) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency. In contrast to the APCΔ14/+ c-Cbl+/+ mice, APCΔ14/+ c-Cbl+/- crypts showed nuclear ß-catenin throughout the length of the crypts and up-regulation of Axin2, a canonical Wnt target gene, and SRY-box transcription factor 9, a marker of intestinal stem cells. In contrast, haploinsufficiency of c-Cbl+/- alone was insufficient to induce tumorigenesis regardless of an increase in the number of intestinal epithelial cells with nuclear ß-catenin and SRY-box transcription factor 9 in APC+/+ c-Cbl+/- mice. This study demonstrates that haploinsufficiency of c-Cbl results in Wnt hyperactivation in intestinal crypts and accelerates CRC progression to adenocarcinoma in the milieu of APCΔ14/+, a phenomenon not found with wild-type APC. While emphasizing the role of APC as a gatekeeper in CRC, this study also demonstrates that combined partial loss of c-Cbl and inactivation of APC significantly contribute to CRC tumorigenesis.


Assuntos
Adenocarcinoma/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Haploinsuficiência , Linfoma/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Adenocarcinoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
17.
Sci Rep ; 9(1): 20257, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882749

RESUMO

Casitas B lymphoma (c-Cbl) is an E3 ubiquitin ligase and a negative regulator of colorectal cancer (CRC). Despite its high expression in immune cells, the effect of c-Cbl on the tumor microenvironment remains poorly understood. Here we demonstrate that c-Cbl alters the tumor microenvironment and suppresses Programmed cell death-1 (PD-1) protein, an immune checkpoint receptor. Using syngeneic CRC xenografts, we observed significantly higher growth of xenografts and infiltrating immune cells in c-Cbl+/- compared to c-Cbl+/+ mice. Tumor-associated CD8+ T-lymphocytes and macrophages of c-Cbl+/- mice showed 2-3-fold higher levels of PD-1. Functionally, macrophages from c-Cbl+/- mice showed a 4-5-fold reduction in tumor phagocytosis, which was restored with an anti-PD-1 neutralizing antibody suggesting regulation of PD-1 by c-Cbl. Further mechanistic probing revealed that C-terminus of c-Cbl interacted with the cytoplasmic tail of PD-1. c-Cbl destabilized PD-1 through ubiquitination- proteasomal degradation depending on c-Cbl's RING finger function. This data demonstrates c-Cbl as an E3 ligase of PD-1 and a regulator of tumor microenvironment, both of which were unrecognized components of its tumor suppressive activity. Advancing immune checkpoint and c-Cbl biology, our study prompts for probing of PD-1 regulation by c-Cbl in conditions driven by immune checkpoint abnormalities such as cancers and autoimmune diseases.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/genética , Receptor de Morte Celular Programada 1/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-cbl/genética , Ubiquitina-Proteína Ligases/genética , Animais , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/metabolismo , Camundongos Knockout , Fosforilação , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Carga Tumoral/genética , Microambiente Tumoral/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
18.
J Biol Chem ; 294(35): 13117-13130, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31308178

RESUMO

The tumor microenvironment and proinflammatory signals significantly alter glycosylation of cell-surface proteins on endothelial cells. By altering the N-glycosylation machinery in the endoplasmic reticulum and Golgi, proinflammatory cytokines promote the modification of endothelial glycoproteins such as vascular endothelial growth factor receptor 2 (VEGFR2) with sialic acid-capped N-glycans. VEGFR2 is a highly N-glycosylated receptor tyrosine kinase involved in pro-angiogenic signaling in physiological and pathological contexts, including cancer. Here, using glycoside hydrolase and kinase assays and immunoprecipitation and MS-based analyses, we demonstrate that N-linked glycans at the Asn-247 site in VEGFR2 hinder VEGF ligand-mediated receptor activation and signaling in endothelial cells. We provide evidence that cell surface-associated VEGFR2 displays sialylated N-glycans at Asn-247 and, in contrast, that the nearby sites Asn-145 and Asn-160 contain lower levels of sialylated N-glycans and higher levels of high-mannose N-glycans, respectively. Furthermore, we report that VEGFR2 Asn-247-linked glycans capped with sialic acid oppose ligand-mediated VEGFR2 activation, whereas the uncapped asialo-glycans favor activation of this receptor. We propose that N-glycosylation, specifically the capping of N-glycans at Asn-247 by sialic acid, tunes ligand-dependent activation and signaling of VEGFR2 in endothelial cells.


Assuntos
Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular , Glicosilação , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligantes , Polissacarídeos/química , Polissacarídeos/metabolismo , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química
19.
J Biol Chem ; 294(37): 13671-13680, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31341021

RESUMO

Vascular endothelial cells respond to blood flow-induced shear stress. However, the mechanisms through which endothelial cells transduce mechanical signals to cellular responses remain poorly understood. In this report, using tensile-force assays, immunofluorescence and atomic force microscopy, we demonstrate that immunoglobulin and proline-rich receptor-1 (IGPR-1) responds to mechanical stimulation and increases the stiffness of endothelial cells. We observed that IGPR-1 is activated by shear stress and tensile force and that flow shear stress-mediated IGPR-1 activation modulates remodeling of endothelial cells. We found that under static conditions, IGPR-1 is present at the cell-cell contacts; however, under shear stress, it redistributes along the cell borders into the flow direction. IGPR-1 activation stimulated actin stress fiber assembly and cross-linking with vinculin. Moreover, we noted that IGPR-1 stabilizes cell-cell junctions of endothelial cells as determined by staining of cells with ZO1. Mechanistically, shear stress stimulated activation of AKT Ser/Thr kinase 1 (AKT1), leading to phosphorylation of IGPR-1 at Ser-220. Inhibition of this phosphorylation prevented shear stress-induced actin fiber assembly and endothelial cell remodeling. Our findings indicate that IGPR-1 is an important player in endothelial cell mechanosensing, insights that have important implications for the pathogenesis of common maladies, including ischemic heart diseases and inflammation.


Assuntos
Antígenos CD28/metabolismo , Células Endoteliais/metabolismo , Actinas/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Células Endoteliais/citologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Resistência ao Cisalhamento , Transdução de Sinais , Estresse Mecânico
20.
Cells ; 8(6)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195728

RESUMO

Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.


Assuntos
Neoplasias/patologia , Neovascularização Patológica , Microambiente Tumoral , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Glicosilação , Humanos , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA