RESUMO
Correction for 'Exploring the properties of Zr2CO2/GaS van der Waals heterostructures for optoelectronic applications' by Altaf Ur Rahman et al., Phys. Chem. Chem. Phys., 2024, https://doi.org/10.1039/D4CP02370F.
RESUMO
We investigate the structural, electronic, and optical properties of eight possible Zr2CO2/GaS van der Waals (vdW) heterostructures using first-principles calculations based on a hybrid functional. These structures display favorable stability, indicated by matching crystal structures and negative formation energies. In all considered configurations, these heterostructures act as indirect band gap semiconductors with a type-II band alignment, allowing efficient electron-hole separation. Optical studies reveal their suitability for optoelectronic applications. Zr2CO2/GaS under 4% biaxial compressive strain meets the criteria for photocatalytic water splitting, suggesting their potential for electronic and optoelectronic devices in the visible spectrum. Our findings present prospects for advanced photocatalytic materials and optical devices.
RESUMO
In this study, we conducted first-principles calculations interfaced with Boltzmann transport theory to examine the carrier-dependent thermoelectric properties of CrS2-x Te x (x: 0, 1, 2) dichalcogenides monolayers. We conducted a systematic analysis of the structural, phonon band structures, elastic properties, electronic structures, and thermoelectric properties, of electron (e) and hole (h) doped CrS2-x Te x (x: 0, 1, 2) dichalcogenides monolayers. The studied 2D TMDCs exhibit structural stability, as indicated by the negative formation energy. Additionally, the phonon band structures indicate no negative frequencies along any wave vector, confirming the dynamic stability of the CrS2-x Te x monolayers. CrS2 and CrTe2 monolayers are semiconductors with direct bandgaps of 1.01 and 0.67 eV, respectively. A Janus CrSTe monolayer has a smaller bandgap of 0.21 eV. Temperatures range between 300 and 500 K, and concentrations of e(h) doped in the range of 1.0 × 1018-1.0 × 1020 cm-3 are used to compute the thermoelectric transport coefficients. The low lattice thermal conductivity is predicted for the studied compounds, among which Janus CrSTe and CrTe2 have the minimum value of κlat ≈ 1 W/mK @ 700 K. The figure-of-merit ZT projected value at the optimal e(h) doping concentration for the CrS2 monolayer is as high as 0.07 (0.09) at 500 K. Our findings demonstrate how to design improved thermoelectric materials suitable for various thermoelectric devices.
RESUMO
Herein, we present a detailed comparative study of the structural, elastic, electronic, and magnetic properties of a series of new halide perovskite AgCrX3 (X: F, Cl, Br, I) crystal structures using density functional theory, mean-field theory (MFT), and quantum Monte Carlo (MC) simulations. As demonstrated by the negative formation energy and Born-Huang stability criteria, the suggested perovskite compounds show potential stability in the cubic crystal structure. The materials are ductile because the Pugh's ratio is greater than 1.75, and the Cauchy pressure (C12-C44) is positive. The ground state magnetic moments of the compound were calculated as 3.70, 3.91, 3.92, and 3.91 µB for AgCrF3, AgCrCl3, AgCrBr3, and AgCrI3, respectively. The GGA + SOC computed spin-polarized electronic structures reveal ferromagnetism and confirm the metallic character in all of these compounds under consideration. These characteristics are robust under a ±3% strained lattice constant. Using relativistic pseudopotentials, the total energy is calculated, which yields that the single ion anisotropy is 0.004 meV and the z-axis is the hard-axis in the series of AgCrX3 (X: F, Cl, Br, and I) compounds. Further, to explore room-temperature intrinsic ferromagnetism, we considered ferromagnetic and antiferromagnetic interactions of the magnetic ions in the compounds by considering a supercell with 2 × 2 × 2 dimensions. The transition temperature is estimated by two models, namely, MFT and MC simulations. The calculated Curie temperatures using MC simulations are 518.35, 624.30, 517.94, and 497.28 K, with ±5% error for AgCrF3, AgCrCl3, AgCrBr3, and AgCrI3 compounds, respectively. Our results suggest that halide perovskite AgCrX3 compounds are promising materials for spintronic nanodevices at room temperature and provide new recommendations. For the first time, we report results for novel halide perovskite compounds based on Ag and Cr atoms.
RESUMO
The need for new and better semiconductor materials for use in renewable energy devices motivates us to study KRuF3 and KOsF3 fluoride materials. In the present work, we computationally studied these materials and elaborate their varied properties comprehensively with the assistance of density functional theory-based techniques. To find the structural stability of these under-consideration materials, we employed the Birch-Murnaghan fit, while their electronic characteristics were determined with the usage of modified potential of Becke-Johnson. During the study, it became evident from the band-structure results of the KRuF3 and KOsF3 materials that both present an indirect semiconductor nature having the band gap values of 2.1 and 1.7 eV, respectively. For both the studied materials, the three essential elastic constants were determined first, which were further used to evaluate all the mechanical parameters of the studied materials. From the calculated values of Pugh's ratio and Poisson's ratio for the KRuF3 and KOsF3 materials, both were verified to procure the nature of ductility. During the study, we concluded from the results of absorption coefficient and optical conduction in the UV energy range that both the studied materials proved their ability for utilization in the numerous future optoelectronic devices.
RESUMO
Microneedles have recently emerged as a promising platform for delivering therapeutic agents by disrupting the skin, resulting in improved and high drug delivery via this route. Ibuprofen is widely used topically and orally for chronic pain conditions; to avoid untoward gastric effects, topical application is preferred over the oral route. This study aimed to enhance the solubility of the poorly water-soluble ibuprofen using Soluplus (SP) as a solubilizer and to fabricate dissolving microneedle patches of the drug. The fabricated patches were compared with marketed oral and topical formulations of ibuprofen. A 432-fold increase was observed in the solubility of the drug at 8% SP. The FTIR studies revealed that the drug and polymers were compatible. MNs were of uniform morphology and released the drug in a predictable manner. The in vivo analysis on healthy human volunteers revealed a Cmax of 28.7 µg/mL ± 0.5 with a Tmax of 24 h and a MRT of 19.5 h, which was significantly higher than that observed for commercially available topical formulations. The prepared ibuprofen microneedles have higher bioavailability and MRT at a lower dose (165 µg) as compared to tablet and cream doses (200 mg).
RESUMO
In the present era of advanced technology, the surge for suitable multifunctional materials capable of operating above 300 °C has increased for the utilization of high-temperature piezoelectric devices. For this purpose, a pseudo-tetragonal phased CaBi4Ti3.98 (Nb0.5Fe0.5)0.02O15:xwt%MnO2 (CBTNF:xMn), with x = 0-0.20, ceramic system has been engineered for the investigation of structural, ferroelectric, dielectric and high-temperature-dependent piezoelectric properties. XRD analysis confirms that low-content Mn-ion insertion at the lattice sites of CBTNF does not distort the pseudo-tetragonal phase lattice of CBTNF:xMn ceramics, but enhances the functional behavior of the ceramic system, specifically at x = 0.15 wt%Mn. Compared to pure CBT and CBTNF ceramics, CBTNF:0.15Mn has demonstrated a highly dense relative density (~96%), a saturated polarization (PS) of 15.89 µC/cm2, a storage energy density (WST) of ~1.82 J/cm3, an energy-conversion efficiency (Æ) of ~51% and an upgraded piezoelectric behavior (d33) of 27.1 pC/N at room temperature. Sharp temperature-dependent dielectric constant (εr) peaks display the solid ferroelectric behavior of the CBTNF:0.15Mn sample with a Curie temperature (TC) of 766 °C. The thermally stable piezoelectric performance of the CBTNF:0.15Mn ceramic was observed at 600 °C, with just a 0.8% d33 loss (25 pC/N). The achieved results signify that multi-valence Mn ions have effectively intercalated at the lattice sites of the pseudo-tetragonal phased CBTNF counterpart and enhanced the multifunctional properties of the ceramic system, proving it to be a durable contender for utilization in energy-storage applications and stable high-temperature piezoelectric applications.
Assuntos
Compostos de Manganês , Titânio , Temperatura , Óxidos , Cerâmica/químicaRESUMO
Using first-principles calculations, the effects of Yb2+substitutional doping on structural, electronic, and optical properties of a series of perovskite compounds CsCaX3(X: Cl, Br, I), have been investigated. We employed generalized gradient approximation (GGA) and HSE hybrid functional to study the electronic and optical properties. A series of pristine CsCaX3(X: Cl, Br, I) is characterized as a non-magnetic insulator with indirect bandgap perovskite materials. These phosphor materials are suitable candidates for doping with lanthanide series elements to tune their electronic bandgaps according to our requirements because of their wide bandgaps. The calculated electronic bandgaps of CsCaX3(X: Cl, Br, I) are 3.7 eV (GGA) and 4.5 eV (HSE) for CsCaI3, 4.5 eV (GGA) and 5.3 eV (HSE) for CsCaBr3, and 5.4 eV (GGA) and 6.4 eV (HSE) for CsCaCl3. According to formation energies, the Yb2+doped at the Ca-site is thermodynamically more stable as compared to all possible atomic sites. The electronic band structures show that the Yb2+doping induces defective states within the bandgaps of pristine CsCaX3(X: Cl, Br, I). As a result, the Yb2+doped CsCaX3(X: Cl, Br, I) become the direct bandgap semiconductors. The defective states above the valence band maximum are produced due to thef-orbital of the Yb atom. The impurity states near the conduction band minimum are induced due to the major contribution ofd-orbital of the Yb atom and the minor contribution ofs-orbital of the Cs atom. The real and imaginary parts of the dielectric function, optical reflectivity, electron energy loss spectrum, extinction coefficient, and refractive index of pristine and Yb2+doped CsCaX3(X: Cl, Br, I) were studied. The optical dispersion results of dielectric susceptibility closely match their relevant electronic structure and align with previously reported theoretical and experimental data. We conclude that the Yb2+doped CsCaX3(X: Cl, Br, I) are appealing candidates for optoelectronic devices.
RESUMO
Using first-principles calculations, functionalization of the monolayer-GaS crystal structure through N or Cr-doping at all possible lattice sites has been investigated. Our results show that pristine monolayer-GaS is an indirect-bandgap, non-magnetic semiconductor. The bandgap can be tuned and a magnetic moment (MM) can be induced by the introduction of N or Cr atomic anion/cation doping in monolayer GaS. For instance, the intrinsic character of monolayer GaS can be changed by substitution of N for the S-site to p-type, while substitution of Cr at the S-site or Ga-site induces half-metallicity at sufficiently high concentrations. The defect states are located in the electronic bandgap region of the GaS monolayer. These findings help to extend the application of monolayer-GaS structures in nano-electronics and spintronics. Since the S-sites at the surface are more easily accessible to doping in experiment, we chose the S-site for further investigations. Finally, we perform calculations with ferromagnetic (FM) and antiferromagnetic (AFM) alignment of the MMs at the dopants. For pairs of impurities of the same species at low concentrations we find Cr atoms to prefer the FM state, while N atoms prefer the AFM state, both for impurities on opposite surfaces of the GaS monolayer and for impurities sharing a common Ga neighbor sitting at the same surface. Extending our study to higher concentrations of Cr atoms, we find that clusters of four Cr atoms prefer AFM coupling, whereas the FM coupling is retained for Cr atoms at larger distance arranged on a honeycomb lattice. For the latter arrangement, we estimate the FM Curie temperatureTCto be 241 K. We conclude that the Cr-doped monolayer-GaS crystal structure offers enhanced electronic and magnetic properties and is an appealing candidate for spintronic devices operating close to room temperature.
RESUMO
Every individual in his/her life experiences cervical pain at some stage which may restrict daily activities. Various approaches are available for the management of cervical pain, which include surgical, pharmacological and physical therapy. Different Manual therapy techniques are used for the treatment of neck pain. Muscle energy techniques and active isolated stretching are under consideration. This case series study was conducted at physical therapy department of North West General Hospital, Peshawar from August 2015 to January 2016 to find out the effectiveness of muscles energy techniques on cervical range of motion and pain. A total of 20 patients suffering neck pain, both genders having age of 25 - 50 years, cervical ROM limitation and muscles spasm were included in the study. Patients were treated by muscles energy technique (MET). The patient's outcome measures were Inclinometer and Visual Analogue Scale (VAS). Data was analyzed using SPSS version 20. The mean age was 32.3±6.53 years. The patient treated with muscles energy technique showed clinically improvement in the range of motion and pain. Results showed that pre and post treatment differences were statistically significant for cervical flexion (0.001), cervical extension (0.001), cervical right side rotation (0.001), cervical left side rotation (0.001), cervical right side bending (0.001), and cervical left side bending (0.01). Paired t-test finding for the pain showed statistically significant difference (0.005). It was concluded that Muscles Energy Technique is effective in the treatment of restricted range of motion and cervical pain.