Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788710

RESUMO

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Encefalopatia Associada a Sepse , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/terapia , Encefalopatia Associada a Sepse/genética , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dependovirus/genética , Masculino , Potenciação de Longa Duração , Receptor trkB/metabolismo , Receptor trkB/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sinapses/metabolismo
2.
Nat Commun ; 15(1): 3081, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594279

RESUMO

Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.


Assuntos
Neurônios , Tato , Camundongos , Animais , Neurônios/fisiologia , Tato/fisiologia , Interneurônios , Reconhecimento Psicológico , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia
3.
Cell Rep ; 42(10): 113166, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768823

RESUMO

Anti-NMDA receptor autoantibodies (NMDAR-Abs) in patients with NMDAR encephalitis cause severe disease symptoms resembling psychosis and cause cognitive dysfunction. After passive transfer of patients' cerebrospinal fluid or human monoclonal anti-GluN1-autoantibodies in mice, we find a disrupted excitatory-inhibitory balance resulting from CA1 neuronal hypoexcitability, reduced AMPA receptor (AMPAR) signaling, and faster synaptic inhibition in acute hippocampal slices. Functional alterations are also reflected in widespread remodeling of the hippocampal proteome, including changes in glutamatergic and GABAergic neurotransmission. NMDAR-Abs amplify network γ oscillations and disrupt θ-γ coupling. A data-informed network model reveals that lower AMPAR strength and faster GABAA receptor current kinetics chiefly account for these abnormal oscillations. As predicted in silico and evidenced ex vivo, positive allosteric modulation of AMPARs alleviates aberrant γ activity, reinforcing the causative effects of the excitatory-inhibitory imbalance. Collectively, NMDAR-Ab-induced aberrant synaptic, cellular, and network dynamics provide conceptual insights into NMDAR-Ab-mediated pathomechanisms and reveal promising therapeutic targets that merit future in vivo validation.


Assuntos
Hipocampo , Transmissão Sináptica , Humanos , Camundongos , Animais , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Neurônios/metabolismo , Autoanticorpos , Receptores de AMPA/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-37028941

RESUMO

BACKGROUND AND OBJECTIVES: Autoantibodies to leucine-rich glioma inactivated protein 1 (LGI1) cause an autoimmune limbic encephalitis with frequent focal seizures and anterograde memory dysfunction. LGI1 is a neuronal secreted linker protein with 2 functional domains: the leucine-rich repeat (LRR) and epitempin (EPTP) regions. LGI1 autoantibodies are known to interfere with presynaptic function and neuronal excitability; however, their epitope-specific mechanisms are incompletely understood. METHODS: We used patient-derived monoclonal autoantibodies (mAbs), which target either LRR or EPTP domains of LGI1 to investigate long-term antibody-induced alteration of neuronal function. LRR- and EPTP-specific effects were evaluated by patch-clamp recordings in cultured hippocampal neurons and compared with biophysical neuron modeling. Kv1.1 channel clustering at the axon initial segment (AIS) was quantified by immunocytochemistry and structured illumination microscopy techniques. RESULTS: Both EPTP and LRR domain-specific mAbs decreased the latency of first somatic action potential firing. However, only the LRR-specific mAbs increased the number of action potential firing together with enhanced initial instantaneous frequency and promoted spike-frequency adaptation, which were less pronounced after the EPTP mAb. This also led to an effective reduction in the slope of ramp-like depolarization in the subthreshold response, suggesting Kv1 channel dysfunction. A biophysical model of a hippocampal neuron corroborated experimental results and suggests that an isolated reduction of the conductance of Kv1-mediated K+ currents largely accounts for the antibody-induced alterations in the initial firing phase and spike-frequency adaptation. Furthermore, Kv1.1 channel density was spatially redistributed from the distal toward the proximal site of AIS under LRR mAb treatment and, to a lesser extant, under EPTP mAb. DISCUSSION: These findings indicate an epitope-specific pathophysiology of LGI1 autoantibodies. The pronounced neuronal hyperexcitability and SFA together with dropped slope of ramp-like depolarization after LRR-targeted interference suggest disruption of LGI1-dependent clustering of K+ channel complexes. Moreover, considering the effective triggering of action potentials at the distal AIS, the altered spatial distribution of Kv1.1 channel density may contribute to these effects through impairing neuronal control of action potential initiation and synaptic integration.


Assuntos
Anticorpos Monoclonais , Peptídeos e Proteínas de Sinalização Intracelular , Neurônios , Humanos , Anticorpos Monoclonais/farmacologia , Autoanticorpos/farmacologia , Epitopos , Leucina , Proteínas do Tecido Nervoso , Neurônios/fisiologia
5.
Elife ; 112022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534089

RESUMO

Spontaneous correlated activity is a universal hallmark of immature neural circuits. However, the cellular dynamics and intrinsic mechanisms underlying network burstiness in the intact developing brain are largely unknown. Here, we use two-photon Ca2+ imaging to comprehensively map the developmental trajectories of spontaneous network activity in the hippocampal area CA1 of mice in vivo. We unexpectedly find that network burstiness peaks after the developmental emergence of effective synaptic inhibition in the second postnatal week. We demonstrate that the enhanced network burstiness reflects an increased functional coupling of individual neurons to local population activity. However, pairwise neuronal correlations are low, and network bursts (NBs) recruit CA1 pyramidal cells in a virtually random manner. Using a dynamic systems modeling approach, we reconcile these experimental findings and identify network bi-stability as a potential regime underlying network burstiness at this age. Our analyses reveal an important role of synaptic input characteristics and network instability dynamics for NB generation. Collectively, our data suggest a mechanism, whereby developing CA1 performs extensive input-discrimination learning prior to the onset of environmental exploration.


Assuntos
Hipocampo , Células Piramidais , Camundongos , Animais , Hipocampo/fisiologia , Células Piramidais/fisiologia , Neurônios/fisiologia
6.
Nat Commun ; 12(1): 4067, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210973

RESUMO

Ataxia Telangiectasia and Rad3-related (ATR) protein, as a key DNA damage response (DDR) regulator, plays an essential function in response to replication stress and controls cell viability. Hypomorphic mutations of ATR cause the human ATR-Seckel syndrome, characterized by microcephaly and intellectual disability, which however suggests a yet unknown role for ATR in non-dividing cells. Here we show that ATR deletion in postmitotic neurons does not compromise brain development and formation; rather it enhances intrinsic neuronal activity resulting in aberrant firing and an increased epileptiform activity, which increases the susceptibility of ataxia and epilepsy in mice. ATR deleted neurons exhibit hyper-excitability, associated with changes in action potential conformation and presynaptic vesicle accumulation, independent of DDR signaling. Mechanistically, ATR interacts with synaptotagmin 2 (SYT2) and, without ATR, SYT2 is highly upregulated and aberrantly translocated to excitatory neurons in the hippocampus, thereby conferring a hyper-excitability. This study identifies a physiological function of ATR, beyond its DDR role, in regulating neuronal activity.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Neurônios/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular , Nanismo , Fármacos Atuantes sobre Aminoácidos Excitatórios , Fácies , Hipocampo , Camundongos , Microcefalia , Mutação , Células de Purkinje , Transdução de Sinais , Sinaptotagmina II/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782119

RESUMO

NKCC1 is the primary transporter mediating chloride uptake in immature principal neurons, but its role in the development of in vivo network dynamics and cognitive abilities remains unknown. Here, we address the function of NKCC1 in developing mice using electrophysiological, optical, and behavioral approaches. We report that NKCC1 deletion from telencephalic glutamatergic neurons decreases in vitro excitatory actions of γ-aminobutyric acid (GABA) and impairs neuronal synchrony in neonatal hippocampal brain slices. In vivo, it has a minor impact on correlated spontaneous activity in the hippocampus and does not affect network activity in the intact visual cortex. Moreover, long-term effects of the developmental NKCC1 deletion on synaptic maturation, network dynamics, and behavioral performance are subtle. Our data reveal a neural network function of NKCC1 in hippocampal glutamatergic neurons in vivo, but challenge the hypothesis that NKCC1 is essential for major aspects of hippocampal development.


Assuntos
Hipocampo/crescimento & desenvolvimento , Membro 2 da Família 12 de Carreador de Soluto/fisiologia , Animais , Animais Recém-Nascidos , Ácido Glutâmico/metabolismo , Camundongos , Rede Nervosa , Neurônios/metabolismo , Sinapses/metabolismo , Córtex Visual/fisiologia , Ácido gama-Aminobutírico/metabolismo
8.
Cell Rep ; 26(12): 3173-3182.e5, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30893591

RESUMO

Synchronized activity is a universal characteristic of immature neural circuits that is essential for their developmental refinement and strongly depends on GABAergic neurotransmission. A major subpopulation of GABA-releasing interneurons (INs) expresses somatostatin (SOM) and proved critical for rhythm generation in adulthood. Here, we report a mechanism whereby SOM INs promote neuronal synchrony in the neonatal CA1 region. Combining imaging and electrophysiological approaches, we demonstrate that SOM INs and pyramidal cells (PCs) coactivate during spontaneous activity. Bidirectional optogenetic manipulations reveal excitatory GABAergic outputs to PCs that evoke correlated network events in an NKCC1-dependent manner and contribute to spontaneous synchrony. Using a dynamic systems modeling approach, we show that SOM INs affect network dynamics through a modulation of network instability and amplification threshold. Our study identifies a network function of SOM INs with implications for the activity-dependent construction of developing brain circuits.


Assuntos
Hipocampo/metabolismo , Interneurônios/metabolismo , Células Piramidais/metabolismo , Somatostatina/biossíntese , Transmissão Sináptica , Animais , Hipocampo/citologia , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , Optogenética , Células Piramidais/citologia
9.
J Neurophysiol ; 119(5): 1863-1878, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29465325

RESUMO

Calcium imaging provides an indirect observation of the underlying neural dynamics and enables the functional analysis of neuronal populations. However, the recorded fluorescence traces are temporally smeared, thus making the reconstruction of exact spiking activity challenging. Most of the established methods to tackle this issue are limited in dealing with issues such as the variability in the kinetics of fluorescence transients, fast processing of long-term data, high firing rates, and measurement noise. We propose a novel, heuristic reconstruction method to overcome these limitations. By using both synthetic and experimental data, we demonstrate the four main features of this method: 1) it accurately reconstructs both isolated spikes and within-burst spikes, and the spike count per fluorescence transient, from a given noisy fluorescence trace; 2) it performs the reconstruction of a trace extracted from 1,000,000 frames in less than 2 s; 3) it adapts to transients with different rise and decay kinetics or amplitudes, both within and across single neurons; and 4) it has only one key parameter, which we will show can be set in a nearly automatic way to an approximately optimal value. Furthermore, we demonstrate the ability of the method to effectively correct for fast and rather complex, slowly varying drifts as frequently observed in in vivo data. NEW & NOTEWORTHY Reconstruction of spiking activities from calcium imaging data remains challenging. Most of the established reconstruction methods not only have limitations in adapting to systematic variations in the data and fast processing of large amounts of data, but their results also depend on the user's experience. To overcome these limitations, we present a novel, heuristic model-free-type method that enables an ultra-fast, accurate, near-automatic reconstruction from data recorded under a wide range of experimental conditions.


Assuntos
Potenciais de Ação/fisiologia , Cálcio/metabolismo , Córtex Cerebral/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Neurônios/fisiologia , Imagem Óptica/métodos , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Simulação por Computador , Microscopia , Estudo de Prova de Conceito
10.
Sci Rep ; 7(1): 13015, 2017 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-29026183

RESUMO

During neocortical development, network activity undergoes a dramatic transition from largely synchronized, so-called cluster activity, to a relatively sparse pattern around the time of eye-opening in rodents. Biophysical mechanisms underlying this sparsification phenomenon remain poorly understood. Here, we present a dynamic systems modeling study of a developing neural network that provides the first mechanistic insights into sparsification. We find that the rest state of immature networks is strongly affected by the dynamics of a transient, unstable state hidden in their firing activities, allowing these networks to either be silent or generate large cluster activity. We address how, and which, specific developmental changes in neuronal and synaptic parameters drive sparsification. We also reveal how these changes refine the information processing capabilities of an in vivo developing network, mainly by showing a developmental reduction in the instability of network's firing activity, an effective availability of inhibition-stabilized states, and an emergence of spontaneous attractors and state transition mechanisms. Furthermore, we demonstrate the key role of GABAergic transmission and depressing glutamatergic synapses in governing the spatiotemporal evolution of cluster activity. These results, by providing a strong link between experimental observations and model behavior, suggest how adult sparse coding networks may emerge developmentally.


Assuntos
Rede Nervosa/fisiologia , Sistema Nervoso/embriologia , Potenciais de Ação/fisiologia , Animais , Neurônios GABAérgicos/metabolismo , Modelos Neurológicos , Plasticidade Neuronal , Sinapses/fisiologia , Fatores de Tempo
11.
PLoS Comput Biol ; 12(2): e1004736, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26894748

RESUMO

Calcium imaging has been used as a promising technique to monitor the dynamic activity of neuronal populations. However, the calcium trace is temporally smeared which restricts the extraction of quantities of interest such as spike trains of individual neurons. To address this issue, spike reconstruction algorithms have been introduced. One limitation of such reconstructions is that the underlying models are not informed about the biophysics of spike and burst generations. Such existing prior knowledge might be useful for constraining the possible solutions of spikes. Here we describe, in a novel Bayesian approach, how principled knowledge about neuronal dynamics can be employed to infer biophysical variables and parameters from fluorescence traces. By using both synthetic and in vitro recorded fluorescence traces, we demonstrate that the new approach is able to reconstruct different repetitive spiking and/or bursting patterns with accurate single spike resolution. Furthermore, we show that the high inference precision of the new approach is preserved even if the fluorescence trace is rather noisy or if the fluorescence transients show slow rise kinetics lasting several hundred milliseconds, and inhomogeneous rise and decay times. In addition, we discuss the use of the new approach for inferring parameter changes, e.g. due to a pharmacological intervention, as well as for inferring complex characteristics of immature neuronal circuits.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Teorema de Bayes , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Células Cultivadas , Biologia Computacional , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA