Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401391, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698578

RESUMO

Magnesium-ion batteries (MIBs) and dual-salt magnesium/lithium-ion batteries (MLIBs) have emerged as promising contenders for next-generation energy storage. In contrast to lithium metal anode in lithium metal batteries, magnesium metal anode in MIBs and MLIBs presents a safer alternative due to the limited dendrite growth and higher volumetric capacity, along with higher natural abundance. This study explores a MLIB configuration with a novel cathode design by employing a 2D/2D nanocomposite of 1T/2H mixed phase MoS2 and delaminated Ti3C2Tx MXene (1T/2H-MoS2@MXene) to address challenges associated with slow kinetics of magnesium ions during cathode interactions. This cathode design takes advantage of the high electrical conductivity of Ti3C2Tx MXene and the expanded interlayer spacing with enhanced conductivity of the 1T metallic phase in 1T/2H mixed phase MoS2. Through a designed synthesis method, the resulting nanocomposite cathode maintains structural integrity, enabling the stable and reversible storage of dual Mg2+ and Li+ ions. The nanocomposite cathode demonstrates superior performance in MLIBs compared to individual components (253 mAh g-1 at 50 mA g-1, and 36% of capacity retention at 1,000 mA g-1), showcasing short ion transport paths and fast ion storage kinetics. This work represents a significant advancement in cathode material design for cost-effective and safe MLIBs.

2.
Small Methods ; : e2400004, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38327158

RESUMO

Two-dimentional (2D) Ti3 C2 Tx MXene has attracted significant attention in non-lithium-ion batteries due to its excellent electrical conductivity, high volumetric capacity, and ability to accommodate intercalants. Rechargeable magnesium batteries with Mg metal anodes are noted for their high theoretical energy density, potential safety, earth abundance, dendrite-free Mg2+ plating/stripping mechanism on the anode side, and low cost. Nevertheless, owing to the large polarity of divalent Mg2+ ions, the insertion of Mg2+ into the MXene layers suffers from sluggish kinetics, limiting the performance for storage of Mg2+ ions. Herein, a simple self-assembly strategy is demonstrated to achieve high magnesium ion storage capability with pillar-structured Ti3 C2 Tx MXene by intercalating a hyperbranched polyethylene ionomer containing quaternary ammonium ions. The ionomer intercalation/modification leads to the expansion of interlayer spacing of the MXene and, meanwhile, improves its affinity to low-polarity THF-based electrolyte. The delaminated ionomer-modified MXene shows significantly improved electrochemical performance as a cathode material for Mg batteries. It shows a promising cycling stability with a capacity retention of 86% after 400 cycles at 200 mA g-1 , as well as outstanding high-rate performance with a capacity of 110 mAh g-1 retained at 1,000 mA g-1 relative to 213 mAh g-1 at 20 mA g-1 .

3.
Small ; 20(2): e2304878, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37691015

RESUMO

Dual-salt magnesium/lithium-ion batteries (MLIBs) benefit from fast lithium ion diffusion on the cathode side while providing safety due to the dendrite-free Mg2+ stripping/plating mechanism on the anode side. Bulk MoS2 (B-MoS2 ), as a cathode for magnesium-ion batteries (MIBs), suffers from low conductivity and relatively van der Waals gaps and, consequently, resists against divalent Mg2+ insertion due to the high Coulombic interactions. In MLIBs, it exhibits a Daniell-cell type mechanism with the sole accommodation of Li+ . In this paper, the synthesis of a 1T/2H mixed-phase MoS2 (MP-MoS2 ) modified with a hyperbranched polyethylene ionomer, I@MP-MoS2 , for high-capacity MLIBs with a distinct Mg2+ /Li+ co-intercalation mechanism is reported. Benefiting from the enhanced conductivity (due to 53% metallic 1T phase), expanded van der Waals gaps (79% expansion compared to B-MoS2 , 1.11 vs 0.62 nm), and enhanced interactions with THF-based electrolytes following the modification, I@MP-MoS2 shows a dramatically increased Mg2+ storage compared to its parent analogue (144 mAh g-1 vs ≈2 mAh g-1 at 20 mA g-1 ). In MLIBs, I@MP-MoS2 is demonstrated to exhibit remarkable specific capacities up to ≈270 mAh g-1 at 20 mA g-1 through a Mg2+ /Li+ co-intercalation mechanism with 87% of capacity retention over 200 cycles at 100 mA g-1 .

4.
J Colloid Interface Sci ; 604: 458-468, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34273782

RESUMO

Membrane fouling is an ongoing challenge in the membrane filtration process. Herein, a photocatalytic membrane comprising a reactive layer was fabricated by engineering partially reduced graphene oxide/Ag nanoparticles/MIL-88A (prGO/Ag/M88A, pGAM) photocatalysts on the PVDF substrate membranes. Benefiting from the high conductivity of prGO and the surface plasmon resonance (SPR) effect of Ag nanoparticles (Ag NPs), the photo-sensitivity of the prGO/Ag/M88A is significantly enhanced. Compared to the membrane in the dark condition, the pGAM membrane displayed an enhanced dye removal efficiency (∼99.7%) and significantly improved permeability (∼189 L·m-2·h-1 bar-1) towards dye contaminants based on the synergistic filtration/photo-Fenton processes. Significantly, the membrane retained high perm-selectivity after 10 cyclic runs (183 L·m-2·h-1 bar-1 of permeability and 98.1% of dye removal), and its nano-channel structure did not collapse under high pressure (0.1-0.4 MPa). The membrane also exhibits antifouling properties with a high water flux recovery of more than 90%. In addition, the pGAM membrane exhibited a high MB degradation efficiency (∼90%) when it is directly used as a photocatalyst in the photo-Fenton system. The mechanism of the self-cleaning is also proposed through quenching experiments. The results of this study demonstrate that this self-cleaning membrane has huge promise for membrane anti-fouling and wastewater remediation.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Condutividade Elétrica , Membranas Artificiais , Prata , Ultrafiltração
5.
Carbohydr Polym ; 157: 468-475, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-27987950

RESUMO

The possibility of using a synthesized inexpensive Brønsted acidic ionic liquids for starch desizing of a textile substrate for the first time was investigated under different conditions in terms of temperature, concentration and treatment time. The samples evaluation was carried out by Fourier transform infrared spectroscopy, microscopic studies, Tegewa tests, measuring weight loss, tensile strength, wetting properties and changes in the samples shades. The results indicated that the ionic liquids have strong effect on the cotton fabric starch desizing (Tegewa 6 or higher) with no adverse effect on the samples strength and whiteness. Thus, it was revealed that proper ionic liquids could be counted as novel starch desizing agents and alternative for the enzymatic process. In addition, it was observed that the acidic ionic liquids because of their specific structure do not have negative aspects of common acidic processes with no sensitivities and drawbacks of enzymatic treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA