Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Antibiotics (Basel) ; 13(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38786109

RESUMO

Antimicrobial resistance (AMR) is one of the major global health and economic threats. There is growing concern about the emergence of AMR in food and the possibility of transmission of microorganisms possessing antibiotic resistance genes (ARGs) to the human gut microbiome. Shotgun sequencing and in vitro antimicrobial susceptibility testing were used in this study to provide a detailed characterization of the antibiotic resistance profile of bacteria and their ARGs in dromedary camel milk. Eight pooled camel milk samples, representative of multiple camels distributed in the Kuwait desert, were collected from retail stores and analyzed. The genotypic analysis showed the presence of ARGs that mediate resistance to 18 classes of antibiotics in camel milk, with the highest resistance to fluoroquinolones (12.48%) and disinfecting agents and antiseptics (9%). Furthermore, the results pointed out the possible transmission of the ARGs to other bacteria through mobile genetic elements. The in vitro antimicrobial susceptibility testing indicated that 80% of the isolates were resistant to different classes of antibiotics, with the highest resistance observed against three antibiotic classes: penicillin, tetracyclines, and carbapenems. Multidrug-resistant pathogens including Klebsiella pneumoniae, Escherichia coli, and Enterobacter hormaechei were also revealed. These findings emphasize the human health risks related to the handling and consumption of raw camel milk and highlight the necessity of improving the hygienic practices of farms and retail stores to control the prevalence of ARGs and their transmission.

2.
Data Brief ; 48: 109151, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37128584

RESUMO

Food contamination by pathogens results in serious health problems and economic losses. Chemical food preservatives pose a risk to human health when used in food preservation. To increase the shelf life of the products and prevent spoilage, the dairy sector is considering natural preservatives such the ribosomally synthesized peptides, bacteriocins. Here we present the draft genome sequence of Enterococcus faecium strain R9 producing three bacteriocins isolated from raw camel milk. These bacteriocins showed valuable technological properties, such as sensitivity to proteolytic enzymes, heat stability, and wide range of pH tolerance. The 2 × 250 bp paired end reads sequencing was performed on Illumina HiSeq 2500 sequencing. The genome sequence consisted of 3,598,862 bases, with a GC content of 37.94% bases. The number of raw reads was 4,670,510, and the assembly N50 score was 65,355 bp with a 310.28 average coverage. A total of 3,086 coding sequences (CDSs) was predicted with 2,126 CDSs with a known function and 127 with a signal peptide. Annotation of the genome sequence revealed bacteriocins encoding genes, namely, enterocin B, enterocin P, and two-component enterocin X (X-alfa and X-beta subunits). These enterocins are beneficial for controlling Listeria monocytogenes in the food industry. Genome sequence of Enterococcus faecium R9 has been deposited at the gene bank under BioSample accession number JALJED000000000 and are available in Mendeley Data [1].

3.
PLoS One ; 17(12): e0278456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36476716

RESUMO

Camel milk is recognized as a functional food with significant economic value. Mastitis is one of the most common and costly diseases in the dairy industry. Mastitis, which is caused by pathogens such as bacteria, viruses, fungi, and algae, has an impact on the quality and quantity of milk produced as well as animal health and welfare. There is a paucity of data on the etiological factors that cause camel mastitis. This study reports the bacterial and fungal community involved in clinical camel mastitis using Illumina amplicon sequencing. A total of 25 milk samples were analyzed, including 9 samples with mastitis and 16 healthy samples. The bacterial community in healthy samples was significantly more diverse and abundant than in mastitis samples. The fungal population in mastitis samples, on the other hand, was more diverse and abundant. As compared to healthy samples, the genera Staphylococcus, Streptococcus, Schlegelella, unclassified Enterobacteriaceae, Lactococcus, Jeotgalicoccus. and Klebsiella were found to be abundant in mastitic milk. However, the genera Corynebacterium, Enteractinococcus, unclassified Sphingomonadaceae, Atopostipes, Paenibacillus, Pseudomonas, Lactobacillus, Sphingomonas, Pediococcus and Moraxella were reduced. In the fungal community, mastitis caused a significant increase in the relative abundance of the majority of taxa, including Candida, Phanerochaete, Aspergillus, Cladosporium and unclassified Pyronemataceae, while Penicillium and Alternaria showed a decline in relative abundance. In the bacterial and fungal communities, the discriminant analysis showed 19 and 5 differently abundant genera in healthy milk and mastitic milk, respectively. In conclusion, this study showed a microbiome dysbiosis linked to clinical camel mastitis, with opportunistic pathogens outgrowing commensal bacteria that were reduced. These findings are essential in designing an appropriate control program in the camel dairy herd, as well as in preventing and treating camel mastitis.


Assuntos
Camelus , Sequenciamento de Nucleotídeos em Larga Escala , Animais
4.
Data Brief ; 45: 108744, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36425980

RESUMO

Raw camel milk samples were collected from three geographical locations (south, north and middle Kuwait) during two seasons. Next generation sequencing of the V3-V4 regions of the 16S rRNA gene was used to analyze the bacterial community in camel milk. DNA was extracted from one hundred thirty-three samples, and libraries were prepared using custom fusion primers of the 16S rRNA gene and sequenced on Illumina HiSeq 2500 platform. 16S rRNA gene sequences were aligned against the SILVA database SSU release 138. The high-throughput sequencing data are available at the NCBI database under the Bioproject PRJNA814013. This work describes camel milk's bacterial diversity among different geographical locations and seasons. The distribution of alpha diversity measures among camel milk sample groups collected from different geographical locations and seasons is presented. A significant effect of these parameters on camel milk's bacterial diversity was shown. Linear discriminant analysis (LefSe) showed significant differentially abundant bacteria at the phylum, class, order, family and genus level among the three locations and seasons. LefSe identified a total of 83 and 40 differentially abundant genera in the different geographical locations and seasons, respectively. More details about the bacterial composition of raw camel milk at the phylum and genus level can be found in research article [1]. These data can be used to compare the diversity of milk bacterial community between different milk producing species and camels from different parts of the world. Besides, these findings will contribute to our understanding of the camel microbiome structure and might be useful for designing an appropriate control program in the camel dairy herd. The data described in this article are available in Mendeley Data [2].

5.
Food Res Int ; 159: 111629, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940813

RESUMO

Camel milk is renowned for its nutritional value and its therapeutic properties. It is considered a promising alternative to bovine milk due to its higher nutritional benefits, hypoallergenic characteristics and greater digestibility in the human gastrointestinal system. This study reports camel milk's bacterial and fungal microbiota, and the effect of geographical location and season on its bacterial community. We sequenced the V3-V4 regions of the16S rRNA gene for bacteria and the internal transcribed spacer (ITS) for fungi. A total of 134 samples of dromedary raw camel milk were collected from south, north and middle Kuwait during two seasons. Raw camel milk showed a diversified bacterial community, with 1196 genera belonging to 33 phyla. The four most predominant phyla of bacteria were Proteobacteria, Firmicutes, Actinobacteria and Bacteroidota. The core microbiota of raw camel milk, represented by the dominant genera shared by the majority of samples, was constituted by the genera Schlegelella, Paenibacillus, Lactobacillus, unclassified Comamonadaceae, Pediococcus, Moraxella, Acinetobacter, Staphylococcus, Enterococcus, Pseudomonas, Streptococcus, unclassified Micrococcaceae, Rothia, unclassified Sphingomonadaceae, unclassified Neisseriaceae and Sphingomonas. The fungal population was assessed in 14 raw camel milk samples, and comprised 87 genera belonging to 3 phyla. The genera Penicillium, Cladosporium, Candida, Aspergillus, Alternaria and Fusarium, dominated the fungal community. These findings shed light on raw camel milk's core bacterial and fungal microbiome. The geographical location and the season had a significant impact on the diversity and composition of camel milk microbiome.


Assuntos
Microbiota , Micobioma , Animais , Bactérias/genética , Camelus , Humanos , Microbiota/genética , Leite/microbiologia
6.
Data Brief ; 43: 108434, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35859785

RESUMO

The data in this article was generated by high throughput sequencing of moderately hydrocarbon polluted sites (S1 and S2) and a heavily polluted site (S3) in Kuwait. Deoxyribonucleic acid (DNA) extracted from each site was subjected to polymerase chain reaction (PCR) amplification employing conserved primers of 16S rRNA and alkB genes. Unique Molecular Identifiers (MID) tags were added to individual samples prior to pooling and sequencing on a Roche GS FLX platform using Pyrosequencing Titanium Chemistry. Raw sff files were deposited to the public repository of National Centre for Biotechnology Information (NCBI) under accession no PRJNA816075. The sff files were clipped according to the MID tags and converted to fasta format. 16S rRNA gene sequences were aligned against the SILVA database. The predominant genera at S1 and S2 was Alkanindiges whereas Alcanivorax, was highly abundant at S3. Alkanindiges have been found to play a key role in hydrocarbon degradation and Alcanivorax genus is known for its hydrocarbon degrading capability. The alk B gene sequences were subjected to blastx. The diversity of alkB gene was higher in S3 as compared to S1 and S2. These findings may open the way to the use of the genera Alkanindiges and Alcanivorax in the rehabilitation of hydrocarbon-contaminated sites in hot, arid climates. The isolation of these microorganisms and the design of bioaugmentation procedures specific to the dry climate could be a key step towards the restoration of hydrocarbon contaminated soils.

7.
Microbiol Resour Announc ; 11(2): e0088821, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35175130

RESUMO

Enterococcus faecium strain S6 is a newly identified bacteriocin producer isolated from raw camel milk. The draft genome sequence is composed of 2,617,971 bp, with 2,407 coding genes and a G+C content of 37.99%. The genome sequence analysis provided details into the antimicrobial properties of strain S6.

8.
Evol Bioinform Online ; 17: 11769343211016887, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163126

RESUMO

Soil contamination by hydrocarbons due to oil spills has become a global concern and it has more implications in oil producing regions. Biostimulation is considered as one of the promising remediation techniques that can be adopted to enhance the rate of degradation of crude oil. The soil microbial consortia play a critical role in governing the biodegradation of total petroleum hydrocarbons (TPHs), in particular polycyclic aromatic hydrocarbons (PAHs). In this study, the degradation pattern of TPHs and PAHs of Kuwait soil biopiles was measured at three-month intervals. Then, the microbial consortium associated with oil degradation at each interval was revealed through 16S rRNA based next generation sequencing. Rapid degradation of TPHs and most of the PAHs was noticed at the first 3 months of biostimulation with a degradation rate of pyrene significantly higher compared to other PAHs counterparts. The taxonomic profiling of individual stages of remediation revealed that, biostimulation of the investigated soil favored the growth of Proteobacteria, Alphaprotobacteria, Chloroflexi, Chlorobi, and Acidobacteria groups. These findings provide a key step towards the restoration of oil-contaminated lands in the arid environment.

9.
J Dairy Sci ; 103(12): 11106-11115, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32981738

RESUMO

The emergence of antimicrobial resistance in the food chain and the consumer's demand for safe food without chemical preservatives have generated much interest in natural antimicrobials. Thus, our main goal was to study the mode of action of the crude extract, the enterocins, and the organic acid produced by a bacteriocinogenic Enterococcus faecium strain S6 previously isolated from raw camel milk. Then, we aimed to evaluate their potential application in a food system. These antimicrobials exhibited antimicrobial activity against Listeria monocytogenes, Salmonella enterica, and Escherichia coli. The enterocins were synthesized as primary metabolites beginning at the lag phase, with optimal production at the exponential and stationary phases. The antimicrobials had a direct effect in extending the lag phase of L. monocytogenes, along with a significant inhibitory activity. The organic acid, in particular, inhibited both L. monocytogenes and S. enterica by inducing a total lysis and damage of the cell wall. The enterocins acted on disrupting the cell wall with pore formation, leading to cell death. Moreover, the crude extract revealed a combined inhibitory activity between enterocins and organic acid. Furthermore, the antimicrobials showed promising results through inhibiting L. monocytogenes cells in milk samples up to 1 wk at 4°C.


Assuntos
Antibacterianos/metabolismo , Camelus , Enterococcus faecium/metabolismo , Leite/química , Animais , Antibacterianos/farmacologia , Microbiologia de Alimentos , Listeria monocytogenes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos
10.
J Dairy Sci ; 101(6): 4944-4952, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29525307

RESUMO

Food safety has become an issue of great interest worldwide. Listeria monocytogenes is a food-borne pathogen that causes listeriosis and is difficult to control in the dairy industry. The use of lactic acid bacteria (LAB) and their antimicrobial substances against Listeria is promising in food applications. Here, we report the isolation from raw camel milk of LAB displaying antilisterial activity. Two isolates were selected for their secretion of bacteriocin(s) and identified by 16S rRNA sequencing as Enterococcus faecium S6 and R9. The produced bacteriocins were partially purified by ammonium sulfate precipitation and then biochemically characterized. Antimicrobial activity was estimated to be 6,400 and 400 AU (arbitrary units)/mL for E. faecium S6 and R9, respectively. The proteinaceous nature of the bacteriocins was confirmed via enzymatic reactions. Moreover, lipolytic and glycolytic enzymes completely inactivated the antimicrobial effect of the bacteriocins. These bacteriocins were heat-resistant and stable over a wide range of pH (2.0 to 10.0). To confirm its inactivation by lipolytic and glycolytic enzymes, the bacteriocin of E. faecium S6 was further purified by gel filtration, which suggested the existence of carbohydrate and lipid moieties. In addition, enterocin-coding genes were identified by PCR, showing DNA fragments corresponding in size to enterocins A, B, and P for E. faecium S6 and to enterocins B and P for E. faecium R9. In conclusion, these results indicate that partially purified bacteriocins from E. faecium S6 and R9 may be beneficial in controlling Listeria in the dairy industry.


Assuntos
Enterococcus faecium/isolamento & purificação , Enterococcus faecium/metabolismo , Leite/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Hidrocarbonetos Aromáticos com Pontes/metabolismo , Camelus/microbiologia , Enterococcus faecium/genética , Listeria monocytogenes/fisiologia
11.
J Membr Biol ; 247(9-10): 853-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24801284

RESUMO

G protein-coupled receptors are at a central node of all cell communications. Investigating their molecular functioning is therefore crucial for both academic purposes and drug design. However, getting the receptors as isolated, stable and purified proteins for such studies still stumbles over their instability out of the membrane environment. Different membrane-mimicking environments have been developed so far to increase the stability of purified receptors. Among them are amphipols. These polymers not only preserve the native fold of receptors purified from membrane fractions but they also allow specific applications such as folding receptors purified from inclusion bodies back to their native state. Of importance, amphipol-trapped G protein-coupled receptors essentially maintain their pharmacological properties so that they are perfectly adapted to further investigate the molecular mechanisms underlying signaling processes. We review here how amphipols have been used to refold and stabilize detergent-solubilized purified receptors and what are the main subsequent molecular pharmacology analyses that were performed using this strategy.


Assuntos
Membrana Celular/química , Polímeros/química , Polímeros/farmacologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Tensoativos/química , Água/química , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Receptores Acoplados a Proteínas G/isolamento & purificação , Solubilidade , Soluções
12.
Proc Natl Acad Sci U S A ; 109(40): 16342-7, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988116

RESUMO

The eight metabotropic glutamate receptors (mGluRs) are key modulators of synaptic transmission and are considered promising targets for the treatment of various brain disorders. Whereas glutamate acts at a large extracellular domain, allosteric modulators have been identified that bind to the seven transmembrane domain (7TM) of these dimeric G-protein-coupled receptors (GPCRs). We show here that the dimeric organization of mGluRs is required for the modulation of active and inactive states of the 7TM by agonists, but is not necessary for G-protein activation. Monomeric mGlu2, either as an isolated 7TM or in full-length, purified and reconstituted into nanodiscs, couples to G proteins upon direct activation by a positive allosteric modulator. However, only a reconstituted full-length dimeric mGlu2 activates G protein upon glutamate binding, suggesting that dimerization is required for glutamate induced activation. These data show that, even for such well characterized GPCR dimers like mGluR2, a single 7TM is sufficient for G-protein coupling. Despite this observation, the necessity of dimeric architecture for signaling induced by the endogenous ligand glutamate confirms that the central core of signaling complex is dimeric.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Ácido Glutâmico/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/metabolismo , Dimerização , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Fosfatos de Inositol/metabolismo , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura
13.
J Med Chem ; 55(20): 8588-602, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22984902

RESUMO

A series of fluorescent benzazepine ligands for the arginine-vasopressin V2 receptor (AVP V2R) was synthesized using "Click" chemistry. Their in vitro pharmacological profile at AVP V2R, V(1a)R, V(1b)R, and oxytocin receptor was measured by binding assay and functional studies. Compound 9p, labeled with Lissamine Rhodamine B using novel solid-phase organic tagging (SPOrT) resin, exhibited a high affinity for V2R (4.0 nM), an excellent selectivity toward V2R and antagonist properties. By changing the nature of the dye, DY647 and Lumi4-Tb probes 44 and 47 still display a high affinity for V2R (5.6 and 5.8 nM, respectively). These antagonists constitute the first high-affinity selective nonpeptidic fluorescent ligands for V2R. They enabled the development of V2R time-resolved FRET-based assay readily amenable to high-throughput screening. Taking advantage of their selectivity, these compounds were also successfully involved in the study of V(1a)R-V2R dimerization on cell surface.


Assuntos
Antagonistas dos Receptores de Hormônios Antidiuréticos , Benzazepinas/síntese química , Corantes Fluorescentes/síntese química , Receptores de Vasopressinas/metabolismo , Benzazepinas/química , Benzazepinas/farmacologia , Química Click , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Ensaios de Triagem em Larga Escala , Ligantes , Modelos Moleculares , Multimerização Proteica , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/metabolismo , Solubilidade , Relação Estrutura-Atividade
14.
Proc Natl Acad Sci U S A ; 109(17): 6733-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493271

RESUMO

G protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters, representing the largest group of therapeutic targets. Recent studies show that some GPCRs signal through both G protein and arrestin pathways in a ligand-specific manner. Ligands that direct signaling through a specific pathway are known as biased ligands. The arginine-vasopressin type 2 receptor (V2R), a prototypical peptide-activated GPCR, is an ideal model system to investigate the structural basis of biased signaling. Although the native hormone arginine-vasopressin leads to activation of both the stimulatory G protein (Gs) for the adenylyl cyclase and arrestin pathways, synthetic ligands exhibit highly biased signaling through either Gs alone or arrestin alone. We used purified V2R stabilized in neutral amphipols and developed fluorescence-based assays to investigate the structural basis of biased signaling for the V2R. Our studies demonstrate that the Gs-biased agonist stabilizes a conformation that is distinct from that stabilized by the arrestin-biased agonists. This study provides unique insights into the structural mechanisms of GPCR activation by biased ligands that may be relevant to the design of pathway-biased drugs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Ligantes , Conformação Proteica , Receptores Acoplados a Proteínas G/química
15.
J Biol Chem ; 285(9): 6337-47, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20026606

RESUMO

Accumulating evidence indicates that G protein-coupled receptors can assemble as dimers/oligomers but the role of this phenomenon in G protein coupling and signaling is not yet clear. We have used the purified leukotriene B(4) receptor BLT2 as a model to investigate the capacity of receptor monomers and dimers to activate the adenylyl cyclase inhibitory G(i2) protein. For this, we overexpressed the recombinant receptor as inclusion bodies in the Escherichia coli prokaryotic system, using a human alpha(5) integrin as a fusion partner. This strategy allowed the BLT2 as well as several other G protein-coupled receptors from different families to be produced and purified in large amounts. The BLT2 receptor was then successfully refolded to its native state, as measured by high-affinity LTB(4) binding in the presence of the purified G protein G alpha(i2). The receptor dimer, in which the two protomers displayed a well defined parallel orientation as assessed by fluorescence resonance energy transfer, was then separated from the monomer. Using two methods of receptor-catalyzed guanosine 5'-3-O-(thio)triphosphate binding assay, we clearly demonstrated that monomeric BLT2 stimulates the purified G alpha(i2) beta(1) gamma(2) protein more efficiently than the dimer. These data suggest that assembly of two BLT2 protomers into a dimer results in the reduced ability to signal.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Receptores do Leucotrieno B4/fisiologia , Transferência Ressonante de Energia de Fluorescência , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/isolamento & purificação , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Integrina alfaV , Ligação Proteica , Multimerização Proteica , Transdução de Sinais
16.
J Mol Biol ; 388(3): 491-507, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19285506

RESUMO

The V2 vasopressin receptor is a G-protein-coupled receptor that regulates the renal antidiuretic response. Its third intracellular loop is involved in the coupling not only with the GalphaS protein but also with gC1qR, a potential chaperone of G-protein-coupled receptors. In this report, we describe the NMR solution structure of the V2 i3 loop under a cyclized form (i3_cyc) and characterize its interaction with gC1qR. i3_cyc formed a left-twisted alpha-helical hairpin structure. The building of a model of the entire V2 receptor including the i3_cyc NMR structure clarified the side-chain orientation of charged residues, in agreement with literature mutagenesis reports. In the model, the i3 loop formed a rigid helical column, protruding deep inside the cytoplasm, as does the i3 loop in the recently elucidated structure of squid rhodopsin. However, its higher packing angle resulted in a different structural motif at the intracellular interface, which may be important for the specific recognition of GalphaS. Moreover, we could estimate the apparent K(d) of the i3_cyc/gC1qR complex by anisotropy fluorescence. Using a shorter and more soluble version of i3_cyc, which encompassed the putative site of gC1qR binding, we showed by NMR saturation transfer difference spectroscopy that the binding surface corresponded to the central arginine cluster. Binding to gC1qR induced the folding of the otherwise disordered short peptide into a spiral-like path formed by a succession of I and IV turns. Our simulations suggested that this folding would rigidify the arginine cluster in the entire i3 loop and would alter the conformation of the cytosolic extensions of TM V and TM VI helices. In agreement with this conformational rearrangement, we observed that binding of gC1qR to the full-length receptor modifies the intrinsic tryptophan fluorescence binding curves of V2 to an antagonist.


Assuntos
Espectroscopia de Ressonância Magnética , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Receptores de Vasopressinas/química , Receptores de Vasopressinas/metabolismo , Sequência de Aminoácidos , Animais , Polarização de Fluorescência , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Ratos
17.
Chemistry ; 14(20): 6247-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18512866

RESUMO

Two novel solid-phase organic tagging (SPOrT) resins were synthesized to facilitate the labeling of peptides and small organic compounds with a fluorescent probe. Both resins were obtained from the commercially available backbone amide linker (BAL) resin. Following the solid-phase synthesis of model compounds, a tripeptide and benzazepine, the fluorescent probe derived from Lissamine Rhodamine B was incorporated through CuI-catalyzed 1,3-dipolar cycloaddition. Final cleavage in acidic media enabled access to both types of molecules in good yield with high purity. The SPOrT resin was successfully applied to the preparation of the first non-peptidic fluorescent compound with a nanomolar affinity for the human vasopressin V2 receptor (V2R) subtype. This molecule will find application in binding assays that use polarization or fluorescence resonance energy-transfer (FRET) techniques. The SPOrT resins are also well suited for other tags and the parallel synthesis of a fluorescently tagged library for protein screening.


Assuntos
Corantes Fluorescentes/síntese química , Peptídeos/química , Receptores de Vasopressinas/química , Eletroquímica , Corantes Fluorescentes/química , Ligantes , Lítio/química , Receptores de Vasopressinas/metabolismo , Análise Espectral Raman , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA