Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Microbiol Biol Educ ; 22(3)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34970382

RESUMO

Practical lab exercises that help students draw connections between genotype and phenotype, and make and test predictions about the identity of mutants, are invaluable in college-level cell biology, genetics, and microbiology courses. While many bacteria are easy to grow and manipulate within the time and resource constraints of a laboratory course, their phenotypes are not always observable or relevant-seeming to college students. Here, we leverage sporulation by the bacterium Bacillus subtilis, a well-characterized and genetically tractable system, to create 5 adaptable lab exercises that can be implemented in different combinations to suit the needs of a variety of courses and instruction modes. Because phenotypic changes during sporulation are striking morphological changes to cells that are easily observable with basic light microscopy, and because spore-forming bacteria related to B. subtilis have clear applications for human and environmental health, these exercises have the potential to engage students' interest while introducing and reinforcing key concepts in microbiology, cell biology, and genetics.

2.
Appl Environ Microbiol ; 84(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30194101

RESUMO

Magnetosomes are complex bacterial organelles that serve as model systems for studying bacterial cell biology, biomineralization, and global iron cycling. Magnetosome biogenesis is primarily studied in two closely related Alphaproteobacteria of the genus Magnetospirillum that form cubooctahedral-shaped magnetite crystals within a lipid membrane. However, chemically and structurally distinct magnetic particles have been found in physiologically and phylogenetically diverse bacteria. Due to a lack of molecular genetic tools, the mechanistic diversity of magnetosome formation remains poorly understood. Desulfovibrio magneticus RS-1 is an anaerobic sulfate-reducing deltaproteobacterium that forms bullet-shaped magnetite crystals. A recent forward genetic screen identified 10 genes in the conserved magnetosome gene island of D. magneticus that are essential for its magnetic phenotype. However, this screen likely missed mutants with defects in crystal size, shape, and arrangement. Reverse genetics to target the remaining putative magnetosome genes using standard genetic methods of suicide vector integration have not been feasible due to the low transconjugation efficiency. Here, we present a reverse genetic method for targeted mutagenesis in D. magneticus using a replicative plasmid. To test this method, we generated a mutant resistant to 5-fluorouracil by making a markerless deletion of the upp gene that encodes uracil phosphoribosyltransferase. We also used this method for targeted marker exchange mutagenesis by replacing kupM, a gene identified in our previous screen as a magnetosome formation factor, with a streptomycin resistance cassette. Overall, our results show that targeted mutagenesis using a replicative plasmid is effective in D. magneticus and may also be applied to other genetically recalcitrant bacteria.IMPORTANCE Magnetotactic bacteria (MTB) are a group of organisms that form intracellular nanometer-scale magnetic crystals though a complex process involving lipid and protein scaffolds. These magnetic crystals and their lipid membranes, termed magnetosomes, are model systems for studying bacterial cell biology and biomineralization and are potential platforms for biotechnological applications. Due to a lack of genetic tools and unculturable representatives, the mechanisms of magnetosome formation in phylogenetically deeply branching MTB remain unknown. These MTB contain elongated bullet-/tooth-shaped magnetite and greigite crystals that likely form in a manner distinct from that of the cubooctahedral-shaped magnetite crystals of the genetically tractable MTB within the Alphaproteobacteria Here, we present a method for genome editing in Desulfovibrio magneticus RS-1, a cultured representative of the deeply branching MTB of the class Deltaproteobacteria This marks a crucial step in developing D. magneticus as a model for studying diverse mechanisms of magnetic particle formation by MTB.


Assuntos
Desulfovibrio/genética , Edição de Genes/métodos , Genoma Bacteriano , Genética Reversa/métodos , Anaerobiose , Desulfovibrio/metabolismo , Magnetossomos/genética , Magnetossomos/metabolismo , Mutagênese , Plasmídeos/genética , Plasmídeos/metabolismo
3.
Front Microbiol ; 8: 384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28326078

RESUMO

Reduced-genome symbionts and their organelle counterparts, which have even smaller genomes, are essential to the lives of many organisms. But how and why have these genomes become so small? Endosymbiotic genome reduction is a product of isolation within the host, followed by massive pseudogenization and gene loss often including DNA repair mechanisms. This phenomenon can be observed in insect endosymbionts such as the bacteria Carsonella ruddii and Buchnera aphidicola. Yet endosymbionts are not the only organisms with reduced genomes. Thermophilic microorganisms experience selective pressures that cause their genomes to become more compact and efficient. Nanoarchaea are thermophilic archaeal ectosymbionts that live on the surface of archaeal hosts. Their genomes, a full order of magnitude smaller than the Escherichia coli genome, are very small and efficient. How have the genomes of nanoarchaea and late-stage insect endosymbionts, which live in drastically different environments, come to mirror each other in both genome size and efficiency? Because of their growth at extreme temperatures and their exterior association with their host, nanoarchaea appear to have experienced genome reduction differently than mesophilic insect endosymbionts. We suggest that habitat-specific mechanisms of genome reduction result in fundamentally different pathways for these two groups of organisms. With this assertion, we propose two pathways of symbiosis-driven genome reduction; isolation-symbiosis experienced by insect endosymbionts and thermal-symbiosis experienced by nanoarchaea.

4.
Biophys J ; 108(5): 1268-74, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762338

RESUMO

Magnetotactic bacteria (MTB) build magnetic nanoparticles in chain configuration to generate a permanent dipole in their cells as a tool to sense the Earth's magnetic field for navigation toward favorable habitats. The majority of known MTB align their nanoparticles along the magnetic easy axes so that the directions of the uniaxial symmetry and of the magnetocrystalline anisotropy coincide. Desulfovibrio magneticus sp. strain RS-1 forms bullet-shaped magnetite nanoparticles aligned along their (100) magnetocrystalline hard axis, a configuration energetically unfavorable for formation of strong dipoles. We used ferromagnetic resonance spectroscopy to quantitatively determine the magnetocrystalline and uniaxial anisotropy fields of the magnetic assemblies as indicators for a cellular dipole with stable direction in strain RS-1. Experimental and simulated ferromagnetic resonance spectral data indicate that the negative effect of the configuration is balanced by the bullet-shaped morphology of the nanoparticles, which generates a pronounced uniaxial anisotropy field in each magnetosome. The quantitative comparison with anisotropy fields of Magnetospirillum gryphiswaldense, a model MTB with equidimensional magnetite particles aligned along their (111) magnetic easy axes in well-organized chain assemblies, shows that the effectiveness of the dipole is similar to that in RS-1. From a physical perspective, this could be a reason for the persistency of bullet-shaped magnetosomes during the evolutionary development of magnetotaxis in MTB.


Assuntos
Desulfovibrio/metabolismo , Óxido Ferroso-Férrico/farmacologia , Nanopartículas de Magnetita/química , Anisotropia , Desulfovibrio/efeitos dos fármacos , Campos Magnéticos
5.
Proc Natl Acad Sci U S A ; 112(13): 3904-9, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25775527

RESUMO

Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. To dissect the biological components that control this process, we have carried out a genetic and biochemical study of proteins proposed to function in iron mineralization. In this study, we show that the redox sites of c-type cytochromes of the Magnetospirillum magneticum AMB-1 magnetosome island, MamP and MamT, are essential to their physiological function and that ablation of one or both heme motifs leads to loss of function, suggesting that their ability to carry out redox chemistry in vivo is important. We also develop a method to heterologously express fully heme-loaded MamP from AMB-1 for in vitro biochemical studies, which show that its Fe(III)-Fe(II) redox couple is set at an unusual potential (-89 ± 11 mV) compared with other related cytochromes involved in iron reduction or oxidation. Despite its low reduction potential, it remains competent to oxidize Fe(II) to Fe(III) and mineralize iron to produce mixed-valent iron oxides. Finally, in vitro mineralization experiments suggest that Mms mineral-templating peptides from AMB-1 can modulate the iron redox chemistry of MamP.


Assuntos
Proteínas de Bactérias/química , Citocromos/química , Magnetossomos/metabolismo , Magnetospirillum/metabolismo , Oxirredução , Fenômenos Biomecânicos , Compostos Férricos/química , Heme/química , Concentração de Íons de Hidrogênio , Íons , Ferro/química , Nanopartículas Metálicas/química , Metais/química , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Oxigênio/química , Peptídeos/química , Plasmídeos/metabolismo , Solubilidade
6.
PLoS Genet ; 11(1): e1004811, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25569806

RESUMO

Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available.


Assuntos
Desulfovibrio/genética , Magnetossomos/genética , Organelas/genética , Alelos , Desulfovibrio/metabolismo , Óxido Ferroso-Férrico/metabolismo , Ilhas Genômicas , Ferro/metabolismo , Família Multigênica , Mutação
7.
Front Microbiol ; 4: 352, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24324464

RESUMO

Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4) or the iron sulfide greigite (Fe3S4). Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds.

8.
J Bacteriol ; 193(6): 1302-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21239581

RESUMO

Bacteria regulate the frequency and timing of DNA replication initiation by controlling the activity of the replication initiator protein DnaA. SirA is a recently discovered regulator of DnaA in Bacillus subtilis whose synthesis is turned on at the start of sporulation. Here, we demonstrate that SirA contacts DnaA at a patch of 3 residues located on the surface of domain I of the replication initiator protein, corresponding to the binding site used by two unrelated regulators of DnaA found in other bacteria. We show that the interaction of SirA with domain I inhibits the ability of DnaA to bind to the origin of replication. DnaA mutants containing amino acid substitutions of the 3 residues are functional in replication initiation but are immune to inhibition by SirA.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mapeamento de Interação de Proteínas , Origem de Replicação , Substituição de Aminoácidos/genética , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
9.
J Bacteriol ; 191(11): 3736-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19329632

RESUMO

Cells of Bacillus subtilis triggered to sporulate under conditions of rapid growth undergo a marked decrease in chromosome copy number, which was partially relieved by a mutation in the sporulation-induced gene yneE. Cells engineered to express yneE during growth were impaired in viability and produced anucleate cells. We conclude that YneE is an inhibitor of DNA replication.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Replicação do DNA/fisiologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Replicação do DNA/genética , Citometria de Fluxo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/genética , Isopropiltiogalactosídeo/farmacologia , Microscopia de Fluorescência
10.
Proc Natl Acad Sci U S A ; 105(40): 15547-52, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18840696

RESUMO

The AbrB protein of the spore-forming bacterium Bacillus subtilis is a repressor of numerous genes that are switched on during the transition from the exponential to the stationary phase of growth. The gene for AbrB is under the negative control of the master regulator for entry into sporulation, Spo0A-P. It has generally been assumed that derepression of genes under the negative control of AbrB is achieved by Spo0A-P-mediated repression of abrB followed by rapid degradation of the AbrB protein. Here, we report that AbrB levels do decrease during the transition to stationary phase, but that this decrease is not the entire basis by which AbrB-controlled genes are derepressed. Instead, AbrB is inactivated by the product of a uncharacterized gene, abbA (formerly ykzF), whose transcription is switched on by Spo0A-P. The abbA gene encodes an antirepressor that binds to AbrB and prevents it from binding to DNA. Combining our results with previous findings, we conclude that Spo0A-P sets in motion two parallel pathways of repression and antirepression to trigger the expression of diverse categories of genes during the transition to stationary phase.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Genoma Bacteriano , Óperon , Transdução de Sinais/genética , Esporos Bacterianos/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA