Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EBioMedicine ; 50: 260-273, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31727601

RESUMO

BACKGROUND: Plethora of efforts fails to yield a single drug to reverse the pathogenesis of Parkinson's disease (PD) and related α-synucleopathies. METHODS: Using chemical biology, we identified a small molecule inhibitor of c-abl kinase, PD180970 that could potentially clear the toxic protein aggregates. Genetic, molecular, cell biological and immunological assays were performed to understand the mechanism of action. In vivo preclinical disease model of PD was used to assess its neuroprotection efficacy. FINDINGS: In this report, we show the ability of a small molecule inhibitor of tyrosine kinases, PD180970, to induce autophagy (cell lines and mice midbrain) in an mTOR-independent manner and ameliorate the α-synuclein mediated toxicity. PD180970 also exerts anti-neuroinflammatory potential by inhibiting the release of proinflammatory cytokines such as IL-6 (interleukin-6) and MCP-1 (monocyte chemoattractant protein-1) through reduction of TLR-4 (toll like receptor-4) mediated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation. In vivo studies show that PD180970 is neuroprotective by degrading the toxic protein oligomers through induction of autophagy and subsiding the microglial activation. INTERPRETATION: These protective mechanisms ensure the negation of Parkinson's disease related motor impairments. FUND: This work was supported by Wellcome Trust/DBT India Alliance Intermediate Fellowship (500159-Z-09-Z), DST-SERB grant (EMR/2015/001946), DBT (BT/INF/22/SP27679/2018) and JNCASR intramural funds to RM, and SERB, DST (SR/SO/HS/0121/2012) to PAA, and DST-SERB (SB/YS/LS-215/2013) to JPC and BIRAC funding to ETA C-CAMP.


Assuntos
Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Agregação Patológica de Proteínas/metabolismo , Animais , Biomarcadores , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Macroautofagia , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Agregados Proteicos/efeitos dos fármacos , Agregação Patológica de Proteínas/tratamento farmacológico , Piridonas/farmacologia , Piridonas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , alfa-Sinucleína/metabolismo
2.
Autophagy ; 15(4): 599-612, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30403914

RESUMO

Macroautophagy/autophagy delivers damaged proteins and organelles to lysosomes for degradation, and plays important roles in maintaining tissue homeostasis by reducing tissue damage. The translocation of LC3 to the limiting membrane of the phagophore, the precursor to the autophagosome, during autophagy provides a binding site for autophagy cargoes, and facilitates fusion with lysosomes. An autophagy-related pathway called LC3-associated phagocytosis (LAP) targets LC3 to phagosome and endosome membranes during uptake of bacterial and fungal pathogens, and targets LC3 to swollen endosomes containing particulate material or apoptotic cells. We have investigated the roles played by autophagy and LAP in vivo by exploiting the observation that the WD domain of ATG16L1 is required for LAP, but not autophagy. Mice lacking the linker and WD domains, activate autophagy, but are deficient in LAP. The LAP-/- mice survive postnatal starvation, grow at the same rate as littermate controls, and are fertile. The liver, kidney, brain and muscle of these mice maintain levels of autophagy cargoes such as LC3 and SQSTM1/p62 similar to littermate controls, and prevent accumulation of SQSTM1 inclusions and tissue damage associated with loss of autophagy. The results suggest that autophagy maintains tissue homeostasis in mice independently of LC3-associated phagocytosis. Further deletion of glutamate E230 in the coiled-coil domain required for WIPI2 binding produced mice with defective autophagy that survived neonatal starvation. Analysis of brain lysates suggested that interactions between WIPI2 and ATG16L1 were less critical for autophagy in the brain, which may allow a low level of autophagy to overcome neonatal lethality. Abbreviations: CCD: coiled-coil domain; CYBB/NOX2: cytochrome b-245: beta polypeptide; GPT/ALT: glutamic pyruvic transaminase: soluble; LAP: LC3-associated phagocytosis; LC3: microtubule-associated protein 1 light chain 3; MEF: mouse embryonic fibroblast; NOD: nucleotide-binding oligomerization domain; NADPH: nicotinamide adenine dinucleotide phosphate; RUBCN/Rubicon: RUN domain and cysteine-rich domain containing Beclin 1-interacting protein; SLE: systemic lupus erythematosus; SQSTM1/p62: sequestosome 1; TLR: toll-like receptor; TMEM: transmembrane protein; TRIM: tripartite motif-containing protein; UVRAG: UV radiation resistance associated gene; WD: tryptophan-aspartic acid; WIPI: WD 40 repeat domain: phosphoinositide interacting.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose , Animais , Autofagia/genética , Autofagia/fisiologia , Proteína 5 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteínas de Transporte/metabolismo , Citocinas/sangue , Feminino , Fibroblastos/metabolismo , Homeostase/genética , Homeostase/fisiologia , Rim/citologia , Rim/crescimento & desenvolvimento , Rim/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Longevidade/genética , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Músculos/citologia , Músculos/metabolismo , Músculos/patologia , Fagocitose/genética , Fagocitose/fisiologia , Fagossomos/genética , Fagossomos/metabolismo , Repetições WD40/genética
3.
Front Mol Neurosci ; 11: 109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686608

RESUMO

Mechanistic insights into aggrephagy, a selective basal autophagy process to clear misfolded protein aggregates, are lacking. Here, we report and describe the role of Estrogen Related Receptor α (ERRα, HUGO Gene Nomenclature ESRRA), new molecular player of aggrephagy, in keeping autophagy flux in check by inhibiting autophagosome formation. A screen for small molecule modulators for aggrephagy identified ERRα inverse agonist XCT 790, that cleared α-synuclein aggregates in an autophagy dependent, but mammalian target of rapamycin (MTOR) independent manner. XCT 790 modulates autophagosome formation in an ERRα dependent manner as validated by siRNA mediated knockdown and over expression approaches. We show that, in a basal state, ERRα is localized on to the autophagosomes and upon autophagy induction by XCT 790, this localization is lost and is accompanied with an increase in autophagosome biogenesis. In a preclinical mouse model of Parkinson's disease (PD), XCT 790 exerted neuroprotective effects in the dopaminergic neurons of nigra by inducing autophagy to clear toxic protein aggregates and, in addition, ameliorated motor co-ordination deficits. Using a chemical biology approach, we unrevealed the role of ERRα in regulating autophagy and can be therapeutic target for neurodegeneration.

4.
Biochem Biophys Rep ; 11: 138-146, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28955778

RESUMO

BACKGROUND: Macroautophagy is a cellular response to starvation wherein superfluous and damaged cytoplasmic constituents are degraded to provide energy for survival and to maintain cellular homeostasis. Dysfunctional autophagy is attributed to disease progression in several pathological conditions and therefore, autophagy has appeared as a potential pharmacological target for such conditions. OBJECTIVE: In search of potential drugs that modulate autophagy, identifying small molecule effectors of autophagy is the primary step. The conventional autophagy assays have a limitation that they cannot be scaled down to a high throughput format, therefore, novel sensitive assays are needed to discover new candidate molecules. Keeping this rationale in mind, a dual luciferase based assay was developed in the yeast S. cerevisiae that could measure both selective and general autophagy in real time. METHODS: Firefly and Renilla luciferase reporter genes were cloned under POT-1 promoter. Using fatty acid medium the promoter was induced and the luciferase cargo was allowed to build up. The cells were then transferred to starvation conditions to stimulate autophagy and the degradation of luciferase markers was followed with time. RESULTS AND CONCLUSION: The assay was more sensitive than conventional assays and could be scaled down to a 384 well format using an automated system. A good Z-factor score indicated that the assay is highly suitable for High Throughput Screening (HTS) of small molecule libraries. Screening of a small molecule library with our assay identified several known and novel modulators of autophagy.

5.
Autophagy ; 13(7): 1221-1234, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28350199

RESUMO

Parkinson disease (PD) is a life-threatening neurodegenerative movement disorder with unmet therapeutic intervention. We have identified a small molecule autophagy modulator, 6-Bio that shows clearance of toxic SNCA/α-synuclein (a protein implicated in synucleopathies) aggregates in yeast and mammalian cell lines. 6-Bio induces autophagy and dramatically enhances autolysosome formation resulting in SNCA degradation. Importantly, neuroprotective function of 6-Bio as envisaged by immunohistology and behavior analyses in a preclinical model of PD where it induces autophagy in dopaminergic (DAergic) neurons of mice midbrain to clear toxic protein aggregates suggesting that it could be a potential therapeutic candidate for protein conformational disorders.


Assuntos
Autofagia/efeitos dos fármacos , Indóis/farmacologia , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Oximas/farmacologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Células HeLa , Humanos , Indóis/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Oximas/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA