Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Genet Eng Rev ; : 1-35, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576250

RESUMO

Diabetes mellitus is a chronic endocrine disease that occurs mostly in the state of hyperglycemia (elevated blood glucose level). In the recent times, diabetes is listed under world's utmost critical health issues. Wound treatment procedures are complicated in diabetic individuals all over the world. Diabetic wound care not only involves high-cost, but also the primary cause of hospitalization, which can lead to amputation thereby reducing diabetic patient life expectancy. To lower the risk of amputation, wound healing requires the development of effective treatments. Traditional management systems for Diabetes are frequently chastised due to their high costs, difficulties in maintaining a sustainable supply chain and limited disposal alternatives. The worrisome rise in diabetes prevalence has sparked a surge of interest in the discovery of viable remedies to supplement existing treatments. Nanomaterials wound healing has a lot of potential for treating and preventing wound infections and it has recently gained popularity owing to its ability to transport drugs to the wound area in a regulated fashion, potentially overpowering the limits of traditional approaches. This research assessed several nanosystems, such as nanocarriers and nanotherapeutics, to explore how they can benefit in diabetic wound healing, with a focus on current obstacles and future prospects.

2.
Waste Manag Res ; 35(6): 563-580, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28566030

RESUMO

In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO2, sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud.


Assuntos
Óxido de Alumínio , Resíduos Industriais , Solo
3.
Waste Manag Res ; 30(9): 922-30, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22751850

RESUMO

'Red mud' or 'bauxite residue', a waste generated from alumina refinery is highly alkaline in nature with a pH of 10.5-12.5. Red mud poses serious environmental problems such as alkali seepage in ground water and alkaline dust generation. One of the options to make red mud less hazardous and environmentally benign is its neutralization with acid or an acidic waste. Hence, in the present study, neutralization of alkaline red mud was carried out using a highly acidic waste (pickling waste liquor). Pickling waste liquor is a mixture of strong acids used for descaling or cleaning the surfaces in steel making industry. The aim of the study was to look into the feasibility of neutralization process of the two wastes using Taguchi's design of experimental methodology. This would make both the wastes less hazardous and safe for disposal. The effect of slurry solids, volume of pickling liquor, stirring time and temperature on the neutralization process were investigated. The analysis of variance (ANOVA) shows that the volume of the pickling liquor is the most significant parameter followed by quantity of red mud with 69.18% and 18.48% contribution each respectively. Under the optimized parameters, pH value of 7 can be achieved by mixing the two wastes. About 25-30% of the total soda from the red mud is being neutralized and alkalinity is getting reduced by 80-85%. Mineralogy and morphology of the neutralized red mud have also been studied. The data presented will be useful in view of environmental concern of red mud disposal.


Assuntos
Óxido de Alumínio/química , Resíduos Industriais/prevenção & controle , Poluentes do Solo/análise , Gerenciamento de Resíduos/métodos , Óxido de Alumínio/análise , Análise de Variância , Concentração de Íons de Hidrogênio , Metalurgia , Microscopia Eletrônica de Varredura , Poluentes do Solo/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA