RESUMO
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Assuntos
Exossomos , Exossomos/metabolismo , Humanos , Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Vasculares/metabolismo , Doenças Vasculares/patologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologiaRESUMO
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease characterized by the presence of dopaminergic neuronal loss and motor disorders. PD dementia (PDD) is a cognitive disorder that affects many PD patients. We have previously demonstrated the proinflammatory role of the glia maturation factor (GMF) in neuroinflammation and neurodegeneration in AD, PD, traumatic brain injury (TBI), and experimental autoimmune encephalomyelitis (EAE) in human brains and animal models. The purpose of this study was to investigate the expression of the GMF in the human PDD brain. We analyzed the expression pattern of the GMF protein in conjunction with amyloid plaques (APs) and neurofibrillary tangles (NFTs) in the substantia nigra (SN) and striatum of PDD brains using immunostaining. We detected a large number of GMF-positive glial fibrillary acidic protein (GFAP) reactive astrocytes, especially abundant in areas with degenerating dopaminergic neurons within the SN and striatum in PDD. Additionally, we observed excess levels of GMF in glial cells in the vicinity of APs, and NFTs in the SN and striatum of PDD and non-PDD patients. We found that the majority of GMF-positive immunoreactive glial cells were co-localized with GFAP-reactive astrocytes. Our findings suggest that the GMF may be involved in the pathogenesis of PDD.
Assuntos
Demência , Encefalomielite Autoimune Experimental , Fator de Maturação da Glia , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Encéfalo , Fator de Maturação da Glia/genéticaRESUMO
Previously we found that inhibitor of differentiation 3 (Id3) gene, a transcriptional repressor, efficiently inhibits corneal keratocyte differentiation to myofibroblasts in vitro. This study evaluated the potential of adeno-associated virus 5 (AAV5)-mediated Id3 gene therapy to treat corneal scarring using an established rabbit in vivo disease model. Corneal scarring/fibrosis in rabbit eyes was induced by alkali trauma, and 24 h thereafter corneas were administered with either balanced salt solution AAV5-naked vector, or AAV5-Id3 vector (n = 6/group) via an optimized reported method. Therapeutic effects of AAV5-Id3 gene therapy on corneal pathology and ocular health were evaluated with clinical, histological, and molecular techniques. Localized AAV5-Id3 gene therapy significantly inhibited corneal fibrosis/haze clinically from 2.7 to 0.7 on the Fantes scale in live animals (AAV5-naked versus AAV5-Id3; p < 0.001). Furthermore, AAV5-Id3 treatment significantly reduced profibrotic gene mRNA levels: α-smooth muscle actin (α-SMA) (2.8-fold; p < 0.001), fibronectin (3.2-fold; p < 0.001), collagen I (0.8-fold; p < 0.001), and collagen III (1.4-fold; p < 0.001), as well as protein levels of α-SMA (23.8%; p < 0.001) and collagens (1.8-fold; p < 0.001). The anti-fibrotic activity of AAV5-Id3 is attributed to reduced myofibroblast formation by disrupting the binding of E-box proteins to the promoter of α-SMA, a transforming growth factor-ß signaling downstream target gene. In conclusion, these results indicate that localized AAV5-Id3 delivery in stroma caused no clinically relevant ocular symptoms or corneal cellular toxicity in the rabbit eyes.
Assuntos
Doenças da Córnea , Lesões da Córnea , Opacidade da Córnea , Actinas/genética , Álcalis , Animais , Cicatriz/patologia , Cicatriz/terapia , Córnea , Doenças da Córnea/genética , Doenças da Córnea/terapia , Lesões da Córnea/patologia , Lesões da Córnea/terapia , Opacidade da Córnea/patologia , Opacidade da Córnea/terapia , Dependovirus , Fibronectinas/genética , Fibrose , Terapia Genética/métodos , RNA Mensageiro , Coelhos , Fatores de Crescimento Transformadores/genéticaRESUMO
INTRODUCTION: Cerebral edema is a key contributor to death and disability in several forms of brain injury. Current treatment options are limited, reactive, and associated with significant morbidity. Targeted therapies are emerging based on a growing understanding of the molecular underpinnings of cerebral edema. AREAS COVERED: We review the pathophysiology and relationships between different cerebral edema subtypes to provide a foundation for emerging therapies. Mechanisms for promising molecular targets are discussed, with an emphasis on those advancing in clinical trials, including ion and water channels (AQP4, SUR1-TRPM4) and other proteins/lipids involved in edema signaling pathways (AVP, COX2, VEGF, and S1P). Research on novel treatment modalities for cerebral edema [including recombinant proteins and gene therapies] is presented and finally, insights on reducing secondary injury and improving clinical outcome are offered. EXPERT OPINION: Targeted molecular strategies to minimize or prevent cerebral edema are promising. Inhibition of SUR1-TRPM4 (glyburide/glibenclamide) and VEGF (bevacizumab) are currently closest to translation based on advances in clinical trials. However, the latter, tested in glioblastoma multiforme, has not demonstrated survival benefit. Research on recombinant proteins and gene therapies for cerebral edema is in its infancy, but early results are encouraging. These newer modalities may facilitate our understanding of the pathobiology underlying cerebral edema.
Assuntos
Edema Encefálico , Canais de Cátion TRPM , Edema Encefálico/terapia , Glibureto/farmacologia , Humanos , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismoRESUMO
Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Tratamento Farmacológico da COVID-19 , Inflamação/tratamento farmacológico , Luteolina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/virologia , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/virologia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/virologia , COVID-19/complicações , COVID-19/virologia , Flavonas/uso terapêutico , Humanos , Inflamação/complicações , Inflamação/virologia , Neurônios/efeitos dos fármacos , Neurônios/virologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidadeRESUMO
Neurotrauma especially traumatic brain injury (TBI) is the leading cause of death and disability worldwide. To improve upon the early diagnosis and develop precision-targeted therapies for TBI, it is critical to understand the underlying molecular mechanisms and signaling pathways. The transcription factor, nuclear factor kappa B (NFκB), which is ubiquitously expressed, plays a crucial role in the normal cell survival, proliferation, differentiation, function, as well as in disease states like neuroinflammation and neurodegeneration. Here, we hypothesized that real-time noninvasive bioluminescence molecular imaging allows rapid and precise monitoring of TBI-induced immediate and rapid spatio-temporal activation of NFκB signaling pathway in response to Glia maturation factor (GMF) upregulation which in turn leads to neuroinflammation and neurodegeneration post-TBI. To test and validate our hypothesis and to gain novel mechanistic insights, we subjected NFκB-RE-Luc transgenic male and female mice to TBI and performed real-time noninvasive bioluminescence imaging (BLI) as well as photoacoustic and ultrasound imaging (PAI). Our BLI data revealed that TBI leads to an immediate and sustained activation of NFκB signaling. Further, our BLI data suggest that especially in male NFκB-RE-Luc transgenic mice subjected to TBI, in addition to brain, there is widespread activation of NFκB signaling in multiple organs. However, in the case of the female NFκB-RE-Luc transgenic mice, TBI induces a very specific and localized activation of NFκB signaling in the brain. Further, our microRNA data suggest that TBI induces significant upregulation of mir-9-5p, mir-21a-5p, mir-34a-5p, mir-16-3p, as well as mir-155-5p within 24 h and these microRNAs can be successfully used as TBI-specific biomarkers. To the best of our knowledge, this is one of the first and unique study of its kind to report immediate and sustained activation of NFκB signaling post-TBI in a gender-specific manner by utilizing real-time non-invasive BLI and PAI in NFκB-RE-Luc transgenic mice. Our study will prove immensely beneficial to gain novel mechanistic insights underlying TBI, unravel novel therapeutic targets, as well as enable us to monitor in real-time the response to innovative TBI-specific precision-targeted gene and stem cell-based precision medicine.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Fator de Maturação da Glia/metabolismo , Medições Luminescentes/métodos , NF-kappa B/metabolismo , Técnicas Fotoacústicas/métodos , Caracteres Sexuais , Ultrassonografia de Intervenção/métodos , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Sistemas Computacionais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos TransgênicosRESUMO
Alzheimer's disease (AD) is an irreversible progressive neurodegenerative disorder recognized by accumulation of amyloid-plaques (APs) and neurofibrillary tangles (NFTs) and eventually loss of memory. Glia maturation factor (GMF), a neuroinflammatory protein first time isolated and cloned in our laboratory plays an important role in the pathogenesis of AD. However, no studies have been reported on whether anti-GMF antibody administration could downregulate neuroinflammation and attenuate amyloid pathology in AD brain. We investigated the potential effect of single dose of (2 mg/kg b.wt/mouse) intravenously (iv) injected with anti-GMF antibodyon cognitive function, neuroprotection, neuroinflammation and Aß load in the brain of 9-month-old 5XFAD mice. Following 4 weeks of anti-GMF antibody delivery in mice, we found reduced expression of GMF, astrocytic glial fibrillary acidic protein (GFAP) and microglial ionizing calcium binding adaptor molecule 1 (Iba1) as well as improvement inneuroinflammatory response via inhibition of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) production and amyloid pathology in the cerebral cortex and hippocampal CA1 region of 5XFAD mice. Correspondingly, blockade of GMF function with anti-GMF antibody improved spatial learning, memory, and long-term recognition memory in 5XFAD mice. The present study demonstrates that the immune checkpoint blockade of GMF function with anti-GMF antibody coordinates anti-inflammatory effects to attenuate neurodegeneration in the cortex and hippocampal CA1 region of 5XFAD mouse brain. Further, our data suggest, that pharmacological immune neutralization of GMF is a promising neuroprotective strategy totherapeutically target neuroinflammation and neurodegeneration in AD. Graphical Abstract 5XFAD mice Polyclonal anti-GMF antibody.
Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Fator de Maturação da Glia/antagonistas & inibidores , Placa Amiloide/patologia , Animais , Comportamento Animal , Modelos Animais de Doenças , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/patologiaRESUMO
Acute traumatic brain injury (TBI) leads to neuroinflammation, neurodegeneration, cognitive decline, psychological disorders, increased blood-brain barrier (BBB) permeability, and microvascular damage in the brain. Inflammatory mediators secreted from activated glial cells, neurons, and mast cells are implicated in the pathogenesis of TBI through secondary brain damage. Abnormalities or damage to the neurovascular unit is the indication of secondary injuries in the brain after TBI. However, the precise mechanisms of molecular and ultrastructural neurovascular alterations involved in the pathogenesis of acute TBI are not yet clearly understood. Moreover, currently, there are no precision-targeted effective treatment options to prevent the sequelae of TBI. In this study, mice were subjected to closed head weight-drop-induced acute TBI and evaluated neuroinflammatory and neurovascular alterations in the brain by immunofluorescence staining or quantitation by enzyme-linked immunosorbent assay (ELISA) procedure. Mast cell stabilizer drug cromolyn was administered to inhibit the neuroinflammatory response of TBI. Results indicate decreased level of pericyte marker platelet-derived growth factor receptor-beta (PDGFR-ß) and BBB-associated tight junction proteins junctional adhesion molecule-A (JAM-A) and zonula occludens-1 (ZO-1) in the brains 7 days after weight-drop-induced acute TBI as compared with the brains from sham control mice indicating acute TBI-associated BBB/tight junction protein disruption. Further, the administration of cromolyn drug significantly inhibited acute TBI-associated decrease of PDGFR-ß, JAM-A, and ZO-1 in the brain. These findings suggest that acute TBI causes BBB/tight junction damage and that cromolyn administration could protect this acute TBI-induced brain damage as well as its long-time consequences.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Encéfalo/metabolismo , Transtornos Cerebrovasculares/metabolismo , Encefalite/metabolismo , Animais , Encéfalo/irrigação sanguínea , Lesões Encefálicas Traumáticas/complicações , Transtornos Cerebrovasculares/etiologia , Encefalite/etiologia , Masculino , Camundongos , Neurônios/metabolismoRESUMO
Traumatic brain injury (TBI) induces inflammatory responses through microglial activation and polarization towards a more inflammatory state that contributes to the deleterious secondary brain injury. Glia maturation factor (GMF) is a pro-inflammatory protein that is responsible for neuroinflammation following insult to the brain, such as in TBI. We hypothesized that the absence of GMF in GMF-knockout (GMF-KO) mice would regulate microglial activation state and the M1/M2 phenotypes following TBI. We used the weight drop model of TBI in C57BL/6 mice wild-type (WT) and GMF-KO mice. Immunofluorescence staining, Western blot, and ELISA assays were performed to confirm TBI-induced histopathological and neuroinflammatory changes. Behavioral analysis was done to check motor coordination ability and cognitive function. We demonstrated that the deletion of GMF in GMF-KO mice significantly limited lesion volume, attenuated neuronal loss, inhibited gliosis, and activated microglia adopted predominantly anti-inflammatory (M2) phenotypes. Using an ELISA method, we found a gradual decrease in pro-inflammatory cytokines (TNF-α and IL-6) and upregulation of anti-inflammatory cytokines (IL-4 and IL-10) in GMF-KO mice compared with WT mice, thus, promoting the transition of microglia towards a more predominantly anti-inflammatory (M2) phenotype. GMF-KO mice showed significant improvement in motor ability, memory, and cognition. Overall, our results demonstrate that GMF deficiency regulates microglial polarization, which ameliorates neuronal injury and behavioral impairments following TBI in mice and concludes that GMF is a regulator of neuroinflammation and an ideal therapeutic target for the treatment of TBI.
Assuntos
Lesões Encefálicas Traumáticas/patologia , Fator de Maturação da Glia/metabolismo , Microglia/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Cognição , Citocinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Fator de Maturação da Glia/deficiência , Gliose/complicações , Gliose/patologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Atividade Motora , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Fenótipo , FosforilaçãoRESUMO
Neurotrauma, especially Traumatic Brain Injury (TBI) is a major health concern not only for the civilian population but also for the military personnel. Currently there are no precision and regenerative therapies available for the successful treatment of TBI patients. Hence, early detection and treatment options may prevent the severity and untoward harmful effects of TBI. However, currently there are no effective biomarkers available for the rapid and robust diagnosis as well as prognosis of TBI. Several biomarkers in blood, cerebrospinal fluid (CSF), saliva and urine have been explored to assess the onset, progression, severity and prognosis of TBI recently. Present knowledge on the blood biomarkers including cytokines and chemokines and in vivo imaging modalities are useful to some extent to detect and treat TBI patients. Here, we review S100B, Glial Fibrillary Acidic Protein (GFAP), Neuron Specific Enolase (NSE), Myelin Basic Protein (MBP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), tau protein, and alpha spectrin II break down products regarding their usefulness as a set of reliable biomarkers for the robust diagnosis of TBI. We suggest that these biomarkers may prove very useful for the diagnosis and prognosis of TBI.
RESUMO
Traumatic brain injury (TBI) is one of the major health problems worldwide that causes death or permanent disability through primary and secondary damages in the brain. TBI causes primary brain damage and activates glial cells and immune and inflammatory cells, including mast cells in the brain associated with neuroinflammatory responses that cause secondary brain damage. Though the survival rate and the neurological deficiencies have shown significant improvement in many TBI patients with newer therapeutic options, the underlying pathophysiology of TBI-mediated neuroinflammation, neurodegeneration, and cognitive dysfunctions is understudied. In this study, we analyzed mast cells and neuroinflammation in weight drop-induced TBI. We analyzed mast cell activation by toluidine blue staining, serum chemokine C-C motif ligand 2 (CCL2) level by enzyme-linked immunosorbent assay (ELISA), and proteinase-activated receptor-2 (PAR-2), a mast cell and inflammation-associated protein, vascular endothelial growth factor receptor 2 (VEGFR2), and blood-brain barrier tight junction-associated claudin 5 and Zonula occludens-1 (ZO-1) protein expression in the brains of TBI mice. Mast cell activation and its numbers increased in the brains of 24 h and 72 h TBI when compared with sham control brains without TBI. Mouse brains after TBI show increased CCL2, PAR-2, and VEGFR2 expression and derangement of claudin 5 and ZO-1 expression as compared with sham control brains. TBI can cause mast cell activation, neuroinflammation, and derangement of tight junction proteins associated with increased BBB permeability. We suggest that inhibition of mast cell activation can suppress neuroimmune responses and glial cell activation-associated neuroinflammation and neurodegeneration in TBI.
Assuntos
Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/metabolismo , Mastócitos/metabolismo , Proteínas de Junções Íntimas/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Lesões Encefálicas/metabolismo , Quimiocina CCL2/sangue , Claudina-5/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor PAR-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteína da Zônula de Oclusão-1/metabolismoRESUMO
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new pandemic infectious disease that originated in China. COVID-19 is a global public health emergency of international concern. COVID-19 causes mild to severe illness with high morbidity and mortality, especially in preexisting risk groups. Therapeutic options are now limited to COVID-19. The hallmark of COVID-19 pathogenesis is the cytokine storm with elevated levels of interleukin-6 (IL-6), IL-1ß, tumor necrosis factor-alpha (TNF-α), chemokine (C-C-motif) ligand 2 (CCL2), and granulocyte-macrophage colony-stimulating factor (GM-CSF). COVID-19 can cause severe pneumonia, and neurological disorders, including stroke, the damage to the neurovascular unit, blood-brain barrier disruption, high intracranial proinflammatory cytokines, and endothelial cell damage in the brain. Mast cells are innate immune cells and also implicated in adaptive immune response, systemic inflammatory diseases, neuroinflammatory diseases, traumatic brain injury and stroke, and stress disorders. SARS-CoV-2 can activate monocytes/macrophages, dendritic cells, T cells, mast cells, neutrophils, and induce cytokine storm in the lung. COVID-19 can activate mast cells, neurons, glial cells, and endothelial cells. SARS-CoV-2 infection can cause psychological stress and neuroinflammation. In conclusion, COVID-19 can induce mast cell activation, psychological stress, cytokine storm, and neuroinflammation.
Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/fisiopatologia , Citocinas/imunologia , Mastócitos/imunologia , Doenças do Sistema Nervoso/imunologia , Pneumonia Viral/imunologia , Pneumonia Viral/fisiopatologia , Estresse Psicológico/fisiopatologia , COVID-19 , Infecções por Coronavirus/complicações , Humanos , Mastócitos/virologia , Doenças do Sistema Nervoso/complicações , Pandemias , Pneumonia Viral/complicações , SARS-CoV-2RESUMO
Traumatic brain injury (TBI) causes disability and death, accelerating the progression towards Alzheimer's disease and Parkinson's disease (PD). TBI causes serious motor and cognitive impairments, as seen in PD that arise during the period of the initial insult. However, this has been understudied relative to TBI induced neuroinflammation, motor and cognitive decline that progress towards PD. Neuronal ubiquitin-C-terminal hydrolase- L1 (UCHL1) is a thiol protease that breaks down ubiquitinated proteins and its level represents the severity of TBI. Previously, we demonstrated the molecular action of glia maturation factor (GMF); a proinflammatory protein in mediating neuroinflammation and neuronal loss. Here, we show that the weight drop method induced TBI neuropathology using behavioral tests, western blotting, and immunofluorescence techniques on sections from wild type (WT) and GMF-deficient (GMF-KO) mice. Results reveal a significant improvement in substantia nigral tyrosine hydroxylase and dopamine transporter expression with motor behavioral performance in GMF-KO mice following TBI. In addition, a significant reduction in neuroinflammation was manifested, as shown by activation of nuclear factor-kB, reduced levels of inducible nitric oxide synthase, and cyclooxygenase- 2 expressions. Likewise, neurotrophins including brain-derived neurotrophic factor and glial-derived neurotrophic factor were significantly improved in GMF-KO mice than WT 72 h post-TBI. Consistently, we found that TBI enhances GFAP and UCHL-1 expression and reduces the number of dopaminergic TH-positive neurons in WT compared to GMF-KO mice 72 h post-TBI. Interestingly, we observed a reduction of THpositive tanycytes in the median eminence of WT than GMF-KO mice. Overall, we found that absence of GMF significantly reversed these neuropathological events and improved behavioral outcome. This study provides evidence that PD-associated pathology progression can be initiated upon induction of TBI.
RESUMO
Traumatic brain injury (TBI) is the primary cause of death and disability affecting over 10 million people in the industrialized world. TBI causes a wide spectrum of secondary molecular and cellular complications in the brain. However, the pathological events are still not yet fully understood. Previously, we have shown that the glia maturation factor (GMF) is a mediator of neuroinflammation in neurodegenerative diseases. To identify the potential molecular pathways accompanying TBI, we used an in vitro cell culture model of TBI. A standardized injury was induced by scalpel cut through a mixed primary cell culture of astrocytes, microglia and neurons obtained from both wild type (WT) and GMF-deficient (GMF-KO) mice. Cell culture medium and whole-cell lysates were collected at 24, 48, and 72 h after the scalpel cuts injury and probed for oxidative stress using immunofluorescence analysis. Results showed that oxidative stress markers such as glutathione and glutathione peroxidase were significantly reduced, while release of cytosolic enzyme lactate dehydrogenase along with nitric oxide and prostaglandin E2 were significantly increased in injured WT cells compared with injured GMF-KO cells. In addition, injured WT cells showed increased levels of oxidation product 4-hydroxynonenal and 8-oxo-2'-deoxyguanosine compared with injured GMF-KO cells. Further, we found that injured WT cells showed a significantly increased expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and phosphorylated ezrin/radixin/moesin proteins, and reduced microtubule associated protein expression compared with injured GMF-KO cells after injury. Collectively, our results demonstrate that GMF exacerbates the oxidative stress-mediated neuroinflammation that could be brought about by TBI-induced astroglial activation.
Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Fator de Maturação da Glia/deficiência , Mediadores da Inflamação/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Lesões Encefálicas Traumáticas/genética , Movimento Celular/fisiologia , Células Cultivadas , Fator de Maturação da Glia/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Estresse Oxidativo/fisiologiaRESUMO
PURPOSE: Psychological stress is a significant health problem in veterans and their family members. Traumatic brain injury (TBI) and stress lead to the onset, progression, and worsening of several inflammatory and neurodegenerative diseases in veterans and civilians. Alzheimer's disease (AD) is a progressive, irreversible neuroinflammatory disease that causes problems with memory, thinking, and behavior. TBIs and chronic psychological stress cause and accelerate the pathology of neuroinflammatory diseases such as AD. However, the precise molecular and cellular mechanisms governing neuroinflammation and neurodegeneration are currently unknown, especially in veterans. The purpose of this review article was to advance the hypothesis that stress and TBI-mediated immune response substantially contribute and accelerate the pathogenesis of AD in veterans and their close family members and civilians. METHODS: The information in this article was collected and interpreted from published articles in PubMed between 1985 and 2020 using the key words stress, psychological stress, Afghanistan war, Operation Enduring Freedom (OEF), Iraq War, Operation Iraqi Freedom (OIF), Operation New Dawn (OND), traumatic brain injury, mast cell and stress, stress and neuroimmune response, stress and Alzheimer's disease, traumatic brain injury, and Alzheimer's disease. FINDINGS: Chronic psychological stress and brain injury induce the generation and accumulation of beta-amyloid peptide, amyloid plaques, neurofibrillary tangles, and phosphorylation of tau in the brain, thereby contributing to AD pathogenesis. Active military personnel and veterans are under enormous psychological stress due to various war-related activities, including TBIs, disabilities, fear, new environmental conditions, lack of normal life activities, insufficient communications, explosions, military-related noise, and health hazards. Brain injury, stress, mast cell, and other immune cell activation can induce headache, migraine, dementia, and upregulate neuroinflammation and neurodegeneration in veterans of Operation Enduring Freedom, Operation Iraqi Freedom, and Operation New Dawn. TBIs, posttraumatic stress disorder, psychological stress, pain, glial activation, and dementia in active military personnel, veterans, or their family members can cause AD several years later in their lives. We suggest that there are increasing numbers of veterans with TBIs and stress and that these veterans may develop AD late in life if no appropriate therapeutic intervention is available. IMPLICATIONS: Per these published reports, the fact that TBIs and psychological stress can accelerate the pathogenesis of AD should be recognized. Active military personnel, veterans, and their close family members should be evaluated regularly for stress symptoms to prevent the pathogenesis of neurodegenerative diseases, including AD.
Assuntos
Campanha Afegã de 2001- , Doença de Alzheimer/epidemiologia , Lesões Encefálicas/epidemiologia , Guerra do Iraque 2003-2011 , Estresse Psicológico/epidemiologia , Veteranos/psicologia , Doença de Alzheimer/imunologia , Lesões Encefálicas/imunologia , Humanos , Estresse Psicológico/imunologiaRESUMO
The molecular mechanism mediating degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD) is not yet fully understood. Previously, we have shown the contribution of glia maturation factor (GMF), a proinflammatory protein in dopaminergic neurodegeneration mediated by activation of mast cells (MCs). In this study, methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal neurodegeneration and astro-glial activations were determined by western blot and immunofluorescence techniques in wild type (WT) mice, MC-deficient (MC-KO) mice and GMF-deficient (GMF-KO) mice, with or without MC reconstitution before MPTP administration. We show that GMF-KO in the MCs reduces the synergistic effects of MC and Calpain1 (calcium-activated cysteine protease enzyme)-dependent dopaminergic neuronal loss that reduces motor behavioral impairments in MPTP-treated mouse. Administration of MPTP increase in calpain-mediated proteolysis in nigral dopaminergic neurons further resulting in motor decline in mice. We found that MPTP administered WT mice exhibits oxidative stress due to significant increases in the levels of malondialdehyde, superoxide dismutase and reduction in the levels of reduced glutathione and glutathione peroxidase activity as compared with both MC-KO and GMF-KO mice. The number of TH-positive neurons in the ventral tegmental area, substantia nigra and the fibers in the striatum were significantly reduced while granulocyte macrophage colony-stimulating factor (GM-CSF), MC-Tryptase, GFAP, IBA1, Calpain1 and intracellular adhesion molecule 1 expression were significantly increased in WT mice. Similarly, tyrosine hydroxylase, dopamine transporters and vesicular monoamine transporters 2 proteins expression were significantly reduced in the SN of MPTP treated WT mice. The motor behavior as analyzed by rotarod and hang test was significantly reduced in WT mice as compared with both the MC-KO and GMF-KO mice. We conclude that GMF-dependent MC activation enhances the detrimental effect of astro-glial activation-mediated oxidative stress and neuroinflammation in the midbrain, and its inhibition may slowdown the progression of PD.
Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Neurônios Dopaminérgicos/metabolismo , Fator de Maturação da Glia , Microglia/metabolismo , Animais , Modelos Animais de Doenças , Dopamina , Fator de Maturação da Glia/metabolismo , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substância Negra/metabolismoRESUMO
Traumatic brain injury (TBI) is a major health problem in the United States, which affects about 1.7 million people each year. Glial cells, T-cells, and mast cells perform specific protective functions in different regions of the brain for the recovery of cognitive and motor functions after central nervous system (CNS) injuries including TBI. Chronic neuroinflammatory responses resulting in neuronal death and the accompanying stress following brain injury predisposes or accelerates the onset and progression of Alzheimer's disease (AD) in high-risk individuals. About 5.7 million Americans are currently living with AD. Immediately following brain injury, mast cells respond by releasing prestored and preactivated mediators and recruit immune cells to the CNS. Blood-brain barrier (BBB), tight junction and adherens junction proteins, neurovascular and gliovascular microstructural rearrangements, and dysfunction associated with increased trafficking of inflammatory mediators and inflammatory cells from the periphery across the BBB leads to increase in the chronic neuroinflammatory reactions following brain injury. In this review, we advance the hypothesis that neuroinflammatory responses resulting from mast cell activation along with the accompanying risk factors such as age, gender, food habits, emotional status, stress, allergic tendency, chronic inflammatory diseases, and certain drugs can accelerate brain injury-associated neuroinflammation, neurodegeneration, and AD pathogenesis.
Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/metabolismo , Inflamação/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/patologia , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Humanos , Inflamação/fisiopatologiaRESUMO
Despite significant advancements in the field of molecular neurobiology especially neuroinflammation and neurodegeneration, the highly complex molecular mechanisms underlying neurodegenerative diseases remain elusive. As a result, the development of the next generation neurotherapeutics has experienced a considerable lag phase. Recent advancements in the field of genome editing offer a new template for dissecting the precise molecular pathways underlying the complex neurodegenerative disorders. We believe that the innovative genome and transcriptome editing strategies offer an excellent opportunity to decipher novel therapeutic targets, develop novel neurodegenerative disease models, develop neuroimaging modalities, develop next-generation diagnostics as well as develop patient-specific precision-targeted personalized therapies to effectively treat neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, Frontotemporal dementia etc. Here, we review the latest developments in the field of CRISPR-mediated genome editing and provide unbiased futuristic insights regarding its translational potential to improve the treatment outcomes and minimize financial burden. However, despite significant advancements, we would caution the scientific community that since the CRISPR field is still evolving, currently we do not know the full spectrum of CRISPR-mediated side effects. In the wake of the recent news regarding CRISPR-edited human babies being born in China, we urge the scientific community to maintain high scientific and ethical standards and utilize CRISPR for developing in vitro disease in a dish model, in vivo testing in nonhuman primates and lower vertebrates and for the development of neurotherapeutics for the currently incurable neurodegenerative disorders. Graphical Abstract.
Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/tendências , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/terapia , Medicina de Precisão/tendências , Animais , Edição de Genes/métodos , Terapia Genética/métodos , Terapia Genética/tendências , Humanos , Medicina de Precisão/métodos , Resultado do TratamentoRESUMO
The pathological form of amyloid beta (Aß) peptide is shown to be toxic to the mitochondria and implicates this organelle in the progression and pathogenesis of Alzheimer's disease (AD). Mitochondria are dynamic structures constantly undergoing fission and fusion, and altering their shape and size while traveling through neurons. Mitochondrial fission (Drp1, Fis1) and fusion (OPA1, Mfn1, and Mfn2) proteins are balanced in healthy neuronal cells. Glia maturation factor (GMF), a neuroinflammatory protein isolated and cloned in our laboratory plays an important role in the pathogenesis of AD. We hypothesized that GMF, a brain-localized inflammatory protein, promotes oxidative stress-mediated disruption of mitochondrial dynamics by alterations in mitochondrial fission and fusion proteins which eventually leads to apoptosis in the Aß (1-42)-treated human neuroblastoma (SH-SY5Y) cells. The SH-SY5Y cells were incubated with GMF and Aß (1-42) peptide, and mitochondrial fission and fusion proteins were analyzed by immunofluorescence, western blotting, and co-immunoprecipitation. We report that SH-SY5Y cells incubated with GMF and Aß (1-42) promote mitochondrial fragmentation, by potentiating oxidative stress, mitophagy and shifts in the Bax/Bcl2 expression and release of cytochrome-c, and eventual apoptosis. In the present study, we show that GMF and Aß treatments significantly upregulate fission proteins and downregulate fusion proteins. The study shows that extracellular GMF is an important inflammatory mediator that mediates mitochondrial dynamics by altering the balance in fission and fusion proteins and amplifies similar effects promoted by Aß. Upregulated GMF in the presence of Aß could be an additional risk factor for AD, and their synergistic actions need to be explored as a potential therapeutic target to suppress the progression of AD.