Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Neurol ; 11: 578720, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117266

RESUMO

In the past decade, several groups have reported that microRNAs (miRNAs) can participate in the regulation of tau protein at different levels, including its expression, alternative splicing, phosphorylation, and aggregation. These observations are significant, since the abnormal regulation and deposition of tau is associated with nearly 30 neurodegenerative disorders. Interestingly, miRNA profiles go awry in tauopathies such as Alzheimer's disease, progressive supranuclear palsy, and frontotemporal dementia. Understanding the role and impact of miRNAs on tau biology could therefore provide important insights into disease risk, diagnostics, and perhaps therapeutics. In this Perspective article, we discuss recent advances in miRNA research related to tau. While proof-of-principle studies hold promise, physiological validation remains limited. To help fill this gap, we describe herein a pure tauopathy mouse model deficient for the miR-132/212 cluster. This miRNA family is strongly downregulated in human tauopathies and shown to regulate tau in vitro and in vivo. No significant differences in survival, motor deficits or body weight were observed in PS19 mice lacking miR-132/212. Age-specific effects were seen on tau expression and phosphorylation but not aggregation. Moreover, various miR-132/212 targets previously implicated in tau modulation were unaffected (GSK-3ß, Foxo3a, Mapk1, p300) or, unexpectedly, reduced (Mapk3, Foxo1, p300, Calpain 2) in miR-132/212-deficient PS19 mice. These observations highlight the challenges of miRNA research in living models, and current limitations of transgenic tau mouse models lacking functional miRNA binding sites. Based on these findings, we finally recommend different strategies to better understand the role of miRNAs in tau physiology and pathology.

2.
J Alzheimers Dis ; 67(3): 893-910, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30689579

RESUMO

Alzheimer's disease (AD) occurs as either an autosomal dominant inherited disease or sporadically. While familial mutant genes can be expressed in cells or in animal models to assess dysregulated functions, sporadic AD cannot be replicated in models given our lack of understanding of causality. Furthermore, the study of sporadic forms of AD is difficult given the inaccessibility of brain tissues in living individuals and the manifestation of symptoms years after the onset of disease. Here, the objective was to assess if induced pluripotent stem cell-derived neurons from well-ascertained sporadic AD individuals could represent potential cellular models to determine the underlying molecular mechanisms of disease. We used cryopreserved peripheral blood mononuclear cells from three well-ascertained sporadic AD and three non-cognitively impaired (NCI) individuals of the CIMA-Q cohort to obtain iPSC-derived neurons. Microtubule associated protein 2 was decreased in AD neurons, whereas expression of AD-associated amyloid precursor protein, tau, and amyloid-ß peptide was similar in AD and NCI individuals. RNA sequencing identified several upregulated and downregulated mRNAs in AD relative to NCI neurons. Of these, complement Factor H (CFH), signal regulatory protein beta1 (SIRPB1), and insulin like growth factor binding protein 5 (IGFBP5) were previously associated with AD. In addition, several transcription factors not previously associated with AD, but involved in neuronal proliferation and differentiation were differentially expressed. The results identify novel avenues for the study of the underlying causes of sporadic AD and support the establishment of additional lines to identify mechanisms of disease in sporadic AD individuals.


Assuntos
Doença de Alzheimer/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Neurônios/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Neurônios Colinérgicos/citologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Feminino , Imunofluorescência , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Neurônios/citologia , Neurônios/metabolismo , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Sequenciamento do Exoma , Proteínas tau/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-27117821

RESUMO

Neurodegenerative disorders are defined by neuronal loss and often associated with dementia. Understanding the multifactorial nature of cognitive decline is of particular interest. Cell loss is certainly a possibility but also an early imbalance in the complex gene networks involved in learning and memory. The small (~22nt) non-coding microRNAs play a major role in gene expression regulation and have been linked to neuronal survival and cognition. Interestingly, changes in microRNA signatures are associated with neurodegenerative disorders. In this review, we explore the role of three microRNAs, namely miR-132, miR-124 and miR-34, which are dysregulated in major neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Interestingly, these microRNAs have been associated with both memory impairment and neuronal survival, providing a potential common molecular mechanism contributing to dementia.


Assuntos
Transtornos da Memória/etiologia , Transtornos da Memória/genética , MicroRNAs/fisiologia , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Animais , Humanos
4.
Sci Rep ; 6: 30953, 2016 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-27484949

RESUMO

The abnormal regulation of amyloid-ß (Aß) metabolism (e.g., production, cleavage, clearance) plays a central role in Alzheimer's disease (AD). Among endogenous factors believed to participate in AD progression are the small regulatory non-coding microRNAs (miRs). In particular, the miR-132/212 cluster is severely reduced in the AD brain. In previous studies we have shown that miR-132/212 deficiency in mice leads to impaired memory and enhanced Tau pathology as seen in AD patients. Here we demonstrate that the genetic deletion of miR-132/212 promotes Aß production and amyloid (senile) plaque formation in triple transgenic AD (3xTg-AD) mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Aß metabolism, including Tau, Mapk, and Sirt1. Consistent with these findings, we show that the modulation of miR-132, or its target Sirt1, can directly regulate Aß production in cells. Finally, both miR-132 and Sirt1 levels correlated with Aß load in humans. Overall, our results support the hypothesis that the miR-132/212 network, including Sirt1 and likely other target genes, contributes to abnormal Aß metabolism and senile plaque deposition in AD. This study strengthens the importance of miR-dependent networks in neurodegenerative disorders, and opens the door to multifactorial drug targets of AD by targeting Aß and Tau.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides/biossíntese , MicroRNAs/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo
5.
Mol Biol Rep ; 43(8): 755-60, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27169424

RESUMO

Cortical spreading depression (CSD) is an evolutionarily conserved phenomenon that involves a slow and self-propagating depolarization wave associated with spontaneous depression of electrical neuronal activity. CSD plays a central role in the pathophysiology of several brain diseases and is considered to be able to promote "Preconditioning". This phenomenon consists of the brain protecting itself against future injury by adaptation. Understanding of the molecular mechanisms underlying Preconditioning has significant clinical implications. We have already proposed that the long-lasting effects of CSD could be related to silencing of retrotransposon sequences by histone methylation. We analyzed DNA methylation of two retrotransposon sequences, LINE1 and L1, and their corresponding expression pattern after CSD induction. Based on immunoprecipitation assay of the methylated DNA (meDIP), we demonstrated hypermethylation of both sequences in preconditioned rat brain cortex compared with a control 24 h after CSD induction. Using quantitative PCR, we also showed that CSD induction caused a decrease of the transcript level of both retrotransposon sequences. Our data are consistent with the hypothesis of epigenetic modifications in Preconditioning-dependent neuroprotection by increasing genome stability via the silencing of retrotransposon sequences.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Epigênese Genética , Elementos Nucleotídeos Longos e Dispersos , Animais , Metilação de DNA , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Óxido Nítrico Sintase Tipo II/genética , Fatores de Proteção , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA