Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Mol Neurosci ; 73(11-12): 912-920, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37845428

RESUMO

Parkinson's disease (PD) is speculated with genetic and environmental factors. At molecular level, the mitochondrial impact is stated to be one of the causative reasons for PD. In this study, we investigated the mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels along with mitochondrial tRNA alterations among three age categories of PD. By determining the genetic and organellar functionality using molecular techniques, the ROS levels were reported to be high with decreased MMP and ATP in the late-onset age group than in other two age categories. Likewise, the tRNA significancy in tRNAThr and tRNAGln was noticed with C4335T and G15927A mutations in late-onset and early-onset PD groups respectively. Therefore, from the findings, ageing has shown a disruption in tRNA metabolism leading to critical functioning of ATP synthesis and MMP, causing oxidative stress in PD patients. These physiological outcomes show that ageing has a keen role in the divergence of mitochondrial function, thereby proving a correlation with ageing and maintenance of mitochondrial homeostasis in PD.


Assuntos
Doença de Parkinson , RNA de Transferência de Treonina , Humanos , RNA de Transferência de Treonina/genética , RNA de Transferência de Treonina/metabolismo , RNA de Transferência de Glutamina/genética , RNA de Transferência de Glutamina/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Índia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
2.
Adv Biol (Weinh) ; 7(12): e2300097, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590305

RESUMO

Parkinson's disease (PD) is a complex condition that is significantly influenced by oxidative stress and inflammation. It is also suggested that telomere shortening (TS) is regulated by oxidative stress which leads to various diseases including age-related neurodegenerative diseases like PD. Thus, it is anticipated that PD would result in TS of peripheral blood mononuclear cells (PBMCs). Telomeres protect the ends of eukaryotic chromosomes preserving them against fusion and destruction. The TS is a normal process because DNA polymerase is unable to replicate the linear ends of the DNA due to end replication complications and telomerase activity in various cell types counteracts this process. PD is usually observed in the aged population and progresses over time therefore, disparities among telomere length in PBMCs of PD patients are recorded and it is still a question whether it has any useful role. Here, the likelihood of telomere attrition in PD and its implications concerning microglia activation, ageing, oxidative stress, and the significance of telomerase activators are addressed. Also, the possibility of telomeres and telomerase as a diagnostic and therapeutic biomarker in PD is discussed.


Assuntos
Doença de Parkinson , Telomerase , Humanos , Idoso , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/terapia , Telomerase/genética , Telomerase/metabolismo , Leucócitos Mononucleares/metabolismo , Medicina de Precisão , Telômero/genética , Telômero/metabolismo
3.
J Neurol ; 269(11): 5798-5811, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35900586

RESUMO

Parkinson's disease (PD) is an ageing disorder with deterioration of dopamine neurons which leads to motor complications like tremor, stiffness, slow movement and postural disturbances. In PD, both genetics as well as environmental factors both play a major role in causing the pathogenesis. Though there are surfeit of risk factors involved in PD occurrence, till now there is lack of an exact causative agent as a risk for PD with confirmative findings. The role of heavy metals reported to be a significant factor in PD pathogenesis. Heavy metal functions in cell maintenance but growing pieces of evidences reported to cause dyshomeostasis with increased PD rate. Metals disturb the molecular processes and results in oxidative stress, DNA damage, mitochondrial dysfunction, and apoptosis. The present review elucidates the role of cobalt, nickel, mercury, chromium, thallium metals in α-synuclein aggregation and its involvement in blood brain barrier flux. Also, the review explains the plausible role of aforementioned metals with a mechanistic approach and therapeutic recommendations in PD.


Assuntos
Mercúrio , Metais Pesados , Doença de Parkinson , Cromo/uso terapêutico , Cobalto/uso terapêutico , Humanos , Mercúrio/uso terapêutico , Metais Pesados/toxicidade , Níquel/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Tálio/uso terapêutico , alfa-Sinucleína
4.
J Colloid Interface Sci ; 611: 397-407, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34963074

RESUMO

Native lipids in cell-membrane support crucial functions like intercell communication via their ability to deform into curved membrane structures. Cell membrane mimicking Giant unilamellar vesicles (GUV) is imperative in understanding native lipid's role in membrane transformation however remains challenging to assemble. We construct two giant vesicle models mimicking bacterial inner-membrane (IM) and outer-membrane (OM) under physiological conditions using single-step gel-assisted lipid swelling. IM vesicles composed of native bacterial lipids undergo small-scale membrane remodeling into bud and short-nanotube structures. In contrast, OM vesicles asymmetrically assembled from Lipopolysaccharide (LPS) and bacterial lipids underwent global membrane deformation under controlled osmotic stress. Remarkably, highly-curved structures mimicking cell-membrane architectures, including daughter vesicle networks interconnected by necks and nano-tubes ranging from micro to nanoscale, are generated in OM vesicles at osmotic stress comparable to that applied in IM vesicles. Further, we provide a quantitative description of the membrane structures by experimentally determining membrane elastic parameters, i.e., neck curvature and bending rigidity. We can conclude that a larger spontaneous curvature estimated from the neck curvature and softer membranes in OM vesicles is responsible for large-scale deformation compared to IM vesicles. Our findings will help comprehend the shape dynamics of complex native bacterial lipid membranes.


Assuntos
Nanotubos , Lipossomas Unilamelares , Membrana Celular , Lipídeos
5.
Environ Res ; 197: 111015, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33775678

RESUMO

The advent of COVID-19 has kept the whole world on their toes. Countries are maximizing their efforts to combat the virus and to minimize the infection. Since infectious microorganisms may be transmitted by variety of routes, respiratory and facial protection is required for those that are usually transmitted via droplets/aerosols. Therefore this pandemic has caused a sudden increase in the demand for personal protective equipment (PPE) such as gloves, masks, and many other important items since, the evidence of individual-to-individual transmission (through respiratory droplets/coughing) and secondary infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). But the disposal of these personal protective measures remains a huge question mark towards the environmental impact. Huge waste generation demands proper segregation according to waste types, collection, and recycling to minimize the risk of infection spread through aerosols and attempts to implement measures to monitor infections. Hence, this review focuses on the impact of environment due to improper disposal of these personal protective measures and to investigate the safe disposal methods for these protective measures by using the safe, secure and innovative biological methods such as the use of Artificial Intelligence (AI) and Ultraviolet (UV) lights for killing such deadly viruses.


Assuntos
COVID-19 , SARS-CoV-2 , Inteligência Artificial , Humanos , Pandemias , Equipamento de Proteção Individual , Resíduos Sólidos
6.
Arch Microbiol ; 203(3): 1251-1258, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33128575

RESUMO

Nonribosomal peptide synthetases (NRPS) are multi-domain enzymes that have innumerably beneficial health applications. Realizing the significance of marine microorganisms in search for NRPS sequences, study was conducted for analysis of NRPS gene sequences of marine crab haemolymph bacteria for the first time. Strains belonging to five different species were found to have NRPS genes. The study generated NRPS sequences from four bacterial species, for which NRPS gene information was not available earlier. Two new putative adenylation domain signatures were identified from phylum Firmicutes. In silico analysis of amino acid sequences from four species showed less identity (42-50%) to the characterized NRPS compounds that integrate serine residue in active site, suggesting the novelty or uncharacterized nature. Altogether, the study warrants future research exploiting marine crab haemolymph bacteria, an unexplored niche of microbial genetic wealth to discover microbial novel NRPS genes and natural products using emerging tools and technologies.


Assuntos
Bactérias/genética , Braquiúros/microbiologia , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Hemolinfa/microbiologia
7.
BMB Rep ; 53(8): 400-412, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32731913

RESUMO

The world has witnessed unimaginable damage from the coronavirus disease-19 (COVID-19) pandemic. Because the pandemic is growing rapidly, it is important to consider diverse treatment options to effectively treat people worldwide. Since the immune system is at the hub of the infection, it is essential to regulate the dynamic balance in order to prevent the overexaggerated immune responses that subsequently result in multiorgan damage. The use of stem cells as treatment options has gained tremendous momentum in the past decade. The revolutionary measures in science have brought to the world mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-Exo) as therapeutic opportunities for various diseases. The MSCs and MSCExos have immunomodulatory functions; they can be used as therapy to strike a balance in the immune cells of patients with COVID-19. In this review, we discuss the basics of the cytokine storm in COVID-19, MSCs, and MSC-derived exosomes and the potential and stem-cell-based ongoing clinical trials for COVID-19. [BMB Reports 2020; 53(8): 400-412].


Assuntos
Infecções por Coronavirus/terapia , Exossomos/transplante , Transplante de Células-Tronco Mesenquimais , Pneumonia Viral/terapia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Citocinas/metabolismo , Humanos , Sistema Imunitário/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , Pneumonia Viral/virologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA