Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS One ; 19(4): e0301989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683764

RESUMO

Somatic Y chromosome loss in hematopoietic cells is associated with higher mortality in men. However, the status of the Y chromosome in cancer tissue is not fully known due to technical limitations, such as difficulties in labelling and sequencing DNA from the Y chromosome. We have developed a system to quantify Y chromosome gain or loss in patient-derived prostate cancer organoids. Using our system, we observed Y chromosome loss in 4 of the 13 (31%) patient-derived metastatic castration-resistant prostate cancer (mCRPC) organoids; interestingly, loss of Yq (long arm of the Y chromosome) was seen in 38% of patient-derived organoids. Additionally, potential associations were observed between mCRPC and Y chromosome nullisomy. The prevalence of Y chromosome loss was similar in primary and metastatic tissue, suggesting that Y chromosome loss is an early event in prostate cancer evolution and may not a result of drug resistance or organoid derivation. This study reports quantification of Y chromosome loss and gain in primary and metastatic prostate cancer tissue and lays the groundwork for further studies investigating the clinical relevance of Y chromosome loss or gain in mCRPC.


Assuntos
Coloração Cromossômica , Cromossomos Humanos Y , Metástase Neoplásica , Masculino , Humanos , Cromossomos Humanos Y/genética , Metástase Neoplásica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Organoides/patologia , Deleção Cromossômica
2.
Carcinogenesis ; 45(1-2): 35-44, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856781

RESUMO

Solute carrier organic anion (SLCO) transporters (OATP transporters) are involved in cellular uptake of drugs and hormones. Germline variants in SLCO1B3 and SLCO2B1 have been implicated in prostate cancer progression and therapy response, including to androgen deprivation and statin medications, but results have appeared heterogeneous. We conducted a cohort study of five single-nucleotide polymorphisms (SNPs) in SLCO1B3 and SLCO2B1 with prior evidence among 3208 men with prostate cancer who participated in the Health Professionals Follow-up Study or the Physicians' Health Study, following participants prospectively after diagnosis over 32 years (median, 14 years) for development of metastases and cancer-specific death (lethal disease, 382 events). Results were suggestive of, but not conclusive for, associations between some SNPs and lethal disease and differences by androgen deprivation and statin use. All candidate SNPs were associated with SLCO mRNA expression in tumor-adjacent prostate tissue. We also conducted a systematic review and harmonized estimates for a dose-response meta-analysis of all available data, including 9 further studies, for a total of 5598 patients and 1473 clinical events. The A allele of the exonic SNP rs12422149 (14% prevalence), which leads to lower cellular testosterone precursor uptake via SLCO2B1, was associated with lower rates of prostate cancer progression (hazard ratio per A allele, 0.80; 95% confidence interval, 0.69-0.93), with little heterogeneity between studies (I2, 0.27). Collectively, the totality of evidence suggests a strong association between inherited genetic variation in SLCO2B1 and prostate cancer prognosis, with potential clinical use in risk stratification related to androgen deprivation therapy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Transportadores de Ânions Orgânicos , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Antagonistas de Androgênios/uso terapêutico , Androgênios , Seguimentos , Estudos de Coortes , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Estudos Prospectivos , Genótipo , Transportadores de Ânions Orgânicos/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/uso terapêutico
3.
Mol Oncol ; 16(22): 3994-4010, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087093

RESUMO

Loss of the histone demethylase KDM5D (lysine-specific demethylase 5D) leads to in vitro resistance of prostate cancer cells to androgen deprivation therapy (ADT) with and without docetaxel. We aimed to define downstream drivers of the KDM5D effect. Using chromatin immunoprecipitation sequencing (ChIP-seq) of the LNCaP cell line (androgen-sensitive human prostate adenocarcinoma) with and without silenced KDM5D, MYBL2-binding sites were analyzed. Associations between MYBL2 mRNA expression and clinical outcomes were assessed in cohorts of men with localized and metastatic hormone-sensitive prostate cancer. In vitro assays with silencing and overexpression of MYBL2 and KDM5D in androgen receptor (AR)-positive hormone-sensitive prostate cancer cell lines, LNCaP and LAPC4, were used to assess their influence on cellular proliferation, apoptosis, and cell cycle distribution, as well as sensitivity to androgen deprivation, docetaxel, and cabazitaxel. We found that silencing KDM5D increased histone H3 lysine K4 (H3K4) trimethylation and increased MYBL2 expression. KDM5D and MYBL2 were negatively correlated with some but not all clinical samples. Higher MYBL2 expression was associated with a higher rate of relapse in localized disease and poorer overall survival in men with metastatic disease in the CHAARTED trial. Lower MYBL2 levels enhanced LNCaP and LAPC4 sensitivity to androgen deprivation and taxanes. In vitro, modifications of KDM5D and MYBL2 altered cell cycle distribution and apoptosis in a cell line-specific manner. These results show that the transcription factor MYBL2 impacts in vitro hormone-sensitive prostate cancer sensitivity to androgen deprivation and taxanes, and lower levels are associated with better clinical outcomes in men with hormone-sensitive prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Docetaxel/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Androgênios , Lisina , Taxoides/uso terapêutico , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/uso terapêutico , Histona Desmetilases , Transativadores , Proteínas de Ciclo Celular
4.
Clin Cancer Res ; 28(16): 3603-3617, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35670774

RESUMO

PURPOSE: Oncogenic alterations of the PI3K/AKT pathway occur in >40% of patients with metastatic castration-resistant prostate cancer, predominantly via PTEN loss. The significance of other PI3K pathway components in prostate cancer is largely unknown. EXPERIMENTAL DESIGN: Patients in this study underwent tumor sequencing using the MSK-IMPACT clinical assay to capture single-nucleotide variants, insertions, and deletions; copy-number alterations; and structural rearrangements, or were profiled through The Cancer Genome Atlas. The association between PIK3R1 alteration/expression and survival was evaluated using univariable and multivariable Cox proportional-hazards regression models. We used the siRNA-based knockdown of PIK3R1 for functional studies. FDG-PET/CT examinations were performed with a hybrid positron emission tomography (PET)/CT scanner for some prostate cancer patients in the MSK-IMPACT cohort. RESULTS: Analyzing 1,417 human prostate cancers, we found a significant enrichment of PIK3R1 alterations in metastatic cancers compared with primary cancers. PIK3R1 alterations or reduced mRNA expression tended to be associated with worse clinical outcomes in prostate cancer, particularly in primary disease, as well as in breast, gastric, and several other cancers. In prostate cancer cell lines, PIK3R1 knockdown resulted in increased cell proliferation and AKT activity, including insulin-stimulated AKT activity. In cell lines and organoids, PIK3R1 loss/mutation was associated with increased sensitivity to AKT inhibitors. PIK3R1-altered patient prostate tumors had increased uptake of the glucose analogue 18F-fluorodeoxyglucose in PET imaging, suggesting increased glycolysis. CONCLUSIONS: Our findings describe a novel genomic feature in metastatic prostate cancer and suggest that PIK3R1 alteration may be a key event for insulin-PI3K-glycolytic pathway regulation in prostate cancer.


Assuntos
Fosfatidilinositol 3-Quinases , Neoplasias da Próstata , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Glicólise , Humanos , Insulina/genética , Insulina/metabolismo , Masculino , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Oncogene ; 41(5): 671-682, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34802033

RESUMO

Chromosome 8q gain is associated with poor clinical outcomes in prostate cancer, but the underlying biological mechanisms remain to be clarified. CSN5, a putative androgen receptor (AR) partner that is located on chromosome 8q, is the key subunit of the COP9 signalosome, which deactivates ubiquitin ligases. Deregulation of CSN5 could affect diverse cellular functions that contribute to tumor development, but there has been no comprehensive study of its function in prostate cancer. The clinical significance of CSN5 amplification/overexpression was evaluated in 16 prostate cancer clinical cohorts. Its oncogenic activity was assessed by genetic and pharmacologic perturbations of CSN5 activity in prostate cancer cell lines. The molecular mechanisms of CSN5 function were assessed, as was the efficacy of the CSN5 inhibitor CSN5i-3 in vitro and in vivo. Finally, the transcription cofactor activity of CSN5 in prostate cancer cells was determined. The prognostic significance of CSN5 amplification and overexpression in prostate cancer was independent of MYC amplification. Inhibition of CSN5 inhibited its oncogenic function by targeting AR signaling, DNA repair, multiple oncogenic pathways, and spliceosome regulation. Furthermore, inhibition of CSN5 repressed metabolic pathways, including oxidative phosphorylation and glycolysis in AR-negative prostate cancer cells. Targeting CSN5 with CSN5i-3 showed potent antitumor activity in vitro and in vivo. Importantly, CSN5i-3 synergizes with PARP inhibitors to inhibit prostate cancer cell growth. CSN5 functions as a transcription cofactor to cooperate with multiple transcription factors in prostate cancer. Inhibiting CSN5 strongly attenuates prostate cancer progression and could enhance PARP inhibition efficacy in the treatment of prostate cancer.


Assuntos
Complexo do Signalossomo COP9
6.
Am J Cancer Res ; 9(8): 1766-1775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497357

RESUMO

Transformed cells are often selectively susceptible to depletion of the amino acid methionine, which induces growth arrest and/or apoptosis. In non-transformed cells, amino acid deficiency is sensed by two stress-activated kinases, general control nonderepressible 2 (GCN2) and protein kinase R-like endoplasmic reticulum kinase (PERK), which phosphorylate and inactivate elongation initiation factor 2 α (eIF2α), thereby suppressing global mRNA translation and inducing activated transcription factor (ATF4). ATF4 and its downstream transcriptional targets including Sestrin-2 constitute an adaptive integrated stress response. We postulated that methionine depletion activates the integrated stress response in breast cancer cells by a GCN2- and/or PERK-dependent mechanism and that selective disruption of one or both of these kinases would enhance the therapeutic activity of methionine restriction. Here we demonstrate that methionine restriction induces eIF2α phosphorylation and enhances ATF4 gene expression and protein levels of ATF4 and Sestrin-2 in triple (ER/PR/HER2)-negative breast cancer (TNBC) cells. However, knockdown of GCN2, PERK or both in TNBC cells did not prevent induction of ATF4 or Sestrin-2 by methionine restriction. In contrast, deletion of GCN2 in murine embryonic fibroblasts abrogated ATF4 and Sestrin-2 induction in response to methionine restriction. Moreover, knockdown of GCN2, PERK or both did not affect TNBC cell growth or apoptosis in response to methionine restriction. Overall, our findings point to a GCN2- and PERK-independent mechanism(s) by which methionine restriction activates the integrated stress response in TNBC cells. Elucidation of this pathway(s) could lead to strategies to enhance the therapeutic response of methionine restriction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA