Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Leukoc Biol ; 115(6): 1177-1182, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38298146

RESUMO

CXCL17, a novel member of the CXC chemokine class, has been implicated in several human pathologies, but its role in mediating immune response is not well understood. Characteristic features of immune response include resident macrophages orchestrating successive and structured recruitment of neutrophils and monocytes to the insult site. Here, we show that Cxcl17 knockout (KO) mice, compared with the littermate wild-type control mice, were significantly impaired in peritoneal neutrophil recruitment post-lipopolysaccharide (LPS) challenge. Further, the KO mice show dysregulated Cxcl1, Cxcr2, and interleukin-6 levels, all of which directly impact neutrophil recruitment. Importantly, the KO mice showed no difference in monocyte recruitment post-LPS challenge or in peritoneal macrophage levels in both unchallenged and LPS-challenged mice. We conclude that Cxcl17 is a proinflammatory chemokine and that it plays an important role in the early proinflammatory response by promoting neutrophil recruitment to the insult site.


Assuntos
Quimiocinas CXC , Lipopolissacarídeos , Camundongos Knockout , Neutrófilos , Receptores de Interleucina-8B , Animais , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Quimiocinas CXC/metabolismo , Quimiocinas CXC/genética , Lipopolissacarídeos/farmacologia , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Infiltração de Neutrófilos , Camundongos Endogâmicos C57BL , Inflamação/imunologia , Inflamação/patologia , Inflamação/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
2.
Trends Mol Med ; 30(1): 37-55, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37872025

RESUMO

Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.


Assuntos
Neoplasias , Receptores de Interleucina-8B , Camundongos , Animais , Humanos , Receptores de Interleucina-8B/genética , Inflamação/metabolismo , Neutrófilos , Neoplasias/genética , Neoplasias/metabolismo , Camundongos Knockout
3.
J Leukoc Biol ; 115(3): 565-572, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38128116

RESUMO

The chemokine Cxcl1 plays a crucial role in recruiting neutrophils in response to infection. The early events in chemokine-mediated neutrophil extravasation involve a sequence of highly orchestrated steps including rolling, adhesion, arrest, and diapedesis. Cxcl1 function is determined by its properties of reversible monomer-dimer equilibrium and binding to Cxcr2 and glycosaminoglycans. Here, we characterized how these properties orchestrate extravasation using intravital microscopy of the cremaster. Compared to WT Cxcl1, which exists as both a monomer and a dimer, the trapped dimer caused faster rolling, less adhesion, and less extravasation. Whole-mount immunofluorescence of the cremaster and arrest assays confirmed these data. Moreover, the Cxcl1 dimer showed impaired LFA-1-mediated neutrophil arrest that could be attributed to impaired Cxcr2-mediated ERK signaling. We conclude that Cxcl1 monomer-dimer equilibrium and potent Cxcr2 activity of the monomer together coordinate the early events in neutrophil recruitment.


Assuntos
Glicosaminoglicanos , Neutrófilos , Quimiocina CXCL1/metabolismo , Neutrófilos/metabolismo , Movimento Celular , Glicosaminoglicanos/metabolismo , Quimiocinas/metabolismo , Infiltração de Neutrófilos , Receptores de Interleucina-8B/metabolismo
4.
J Leukoc Biol ; 114(6): 666-671, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37625009

RESUMO

Microbial infection is characterized by release of multiple proinflammatory chemokines that direct neutrophils to the insult site. How collective function of these chemokines orchestrates neutrophil recruitment is not known. Here, we characterized the role for heterodimer and show that the Cxcl1-Cxcl2 heterodimer is a potent neutrophil chemoattractant in mice and can recruit more neutrophils than the individual chemokines. Chemokine-mediated neutrophil recruitment is determined by Cxcr2 receptor signaling, Cxcr2 endocytosis, and binding to glycosaminoglycans. We have now determined heterodimer's Cxcr2 activity using cellular assays and Cxcr2 density in blood and recruited neutrophils in heterodimer-treated mice. We have shown that the heterodimer binds glycosaminoglycans with higher affinity and more efficiently than Cxcl1 or Cxcl2. These data collectively indicate that optimal glycosaminoglycan interactions and dampened receptor activity acting in concert in a dynamic fashion promote heterodimer-mediated robust neutrophil recruitment. We propose that this could play a critical role in combating infection.


Assuntos
Quimiocina CXCL1 , Quimiocina CXCL2 , Neutrófilos , Animais , Camundongos , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Glicosaminoglicanos/metabolismo , Interleucina-8/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Receptores de Interleucina-8B/metabolismo
5.
Cell Mol Life Sci ; 80(1): 35, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622452

RESUMO

Chemokine CXCL8 is a key facilitator of the human host immune response, mediating neutrophil migration, and activation at the site of infection and injury. The oxidative burst is an important effector mechanism which leads to the generation of reactive nitrogen species (RNS), including peroxynitrite. The current study was performed to determine the potential for nitration to alter the biological properties of CXCL8 and its detection in human disease. Here, we show peroxynitrite nitrates CXCL8 and thereby regulates neutrophil migration and activation. The nitrated chemokine was unable to induce transendothelial neutrophil migration in vitro and failed to promote leukocyte recruitment in vivo. This reduced activity is due to impairment in both G protein-coupled receptor signaling and glycosaminoglycan binding. Using a novel antibody, nitrated CXCL8 was detected in bronchoalveolar lavage samples from patients with pneumonia. These findings were validated by mass spectrometry. Our results provide the first direct evidence of chemokine nitration in human pathophysiology and suggest a natural mechanism that limits acute inflammation.


Assuntos
Interleucina-8 , Ácido Peroxinitroso , Humanos , Quimiocinas/metabolismo , Inflamação/metabolismo , Interleucina-8/metabolismo , Interleucina-8/farmacologia , Leucócitos/metabolismo , Neutrófilos , Ácido Peroxinitroso/farmacologia
6.
Methods Mol Biol ; 2597: 143-157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374420

RESUMO

Humans express around 50 chemokines that play crucial roles in human pathophysiology from combating infection to immune surveillance by directing and trafficking leukocytes to the target tissue. Glycosaminoglycans (GAGs) regulate chemokine function by tuning monomer/dimer levels, chemotactic/haptotactic gradients, and how they are presented to their receptors. Knowledge of the structural features of the chemokine-GAG complexes and GAG properties that define chemokine interactions is essential not only to understand chemokine function, but also for developing drugs that disrupt chemokine-GAG crosstalk and thereby impart protection against dysregulated host defense. Nuclear magnetic resonance (NMR) spectroscopy has proven to be quite useful for providing residue-specific interactions, binding geometry and models, specificity, and affinity. Multiple NMR methods have been used including (1) chemical shift perturbation (CSP), (2) saturation transfer difference (STD), and (3) paramagnetic relaxation enhancement (PRE) techniques. In this chapter, we describe how NMR CSP, STD, and PRE can be best used for characterizing chemokine-GAG interactions.


Assuntos
Quimiocinas , Glicosaminoglicanos , Humanos , Glicosaminoglicanos/química , Ligação Proteica , Espectroscopia de Ressonância Magnética/métodos , Quimiocinas/metabolismo
7.
Methods Mol Biol ; 2303: 13-23, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626366

RESUMO

Solution nuclear magnetic resonance (NMR) spectroscopy and, in particular, chemical shift perturbation (CSP) titration experiments are ideally suited for mapping and characterizing the binding interface of macromolecular complexes. 1H-15N-HSQC-based CSP studies have become the method of choice due to their simplicity, short-time requirements, and minimal working knowledge of NMR. CSP studies for characterizing protein-glycosaminoglycan (GAG) interactions can be challenging due to binding-induced aggregation/precipitation and/or poor quality data. In this chapter, we discuss how optimizing experimental conditions such as protein concentration, choice of buffer pH, ionic strength, and GAG size, as well as sensitivity of NMR instrumentation can overcome these roadblocks to obtain meaningful structural insights into protein-GAG interactions.


Assuntos
Glicosaminoglicanos/química , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
8.
Methods Mol Biol ; 2303: 307-317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34626389

RESUMO

It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein-glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide all of the thermodynamic parameters-enthalpy, entropy, free energy (binding constant), and stoichiometry-from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein-GAG interactions.


Assuntos
Termodinâmica , Calorimetria , Entropia , Glicosaminoglicanos , Ligação Proteica
9.
Biochem J ; 478(5): 1009-1021, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33463672

RESUMO

Chemokines Cxcl1/KC and Cxcl2/MIP2 play a crucial role in coordinating neutrophil migration to the insult site. Chemokines' recruitment activity is regulated by monomer-dimer equilibrium and binding to glycosaminoglycans (GAGs). GAG chains exist as covalently linked to core proteins of proteoglycans (PGs) and also as free chains due to cleavage by heparanases during the inflammatory response. Compared with free GAGs, binding to GAGs in a PG is influenced by their fixed directionality due to covalent linkage and restricted mobility. GAG interactions impact chemokine monomer/dimer levels, chemotactic and haptotactic gradients, life time, and presentation for receptor binding. Here, we show that Cxcl1 and Cxcl2 also form heterodimers. Using a disulfide-trapped Cxcl1-Cxcl2 heterodimer, we characterized its binding to free heparin using nuclear magnetic resonance and isothermal titration calorimetry, and to immobilized heparin and heparan sulfate using surface plasmon resonance. These data, in conjunction with molecular docking, indicate that the binding characteristics such as geometry and stoichiometry of the heterodimer are different between free and immobilized GAGs and are also distinctly different from those of the homodimers. We propose that the intrinsic asymmetry of the heterodimer structure, along with differences in its binding to PG GAGs and free GAGs, regulate chemokine function.


Assuntos
Quimiocina CXCL1/química , Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/química , Quimiocina CXCL2/metabolismo , Heparina/química , Heparina/metabolismo , Multimerização Proteica , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Transdução de Sinais
10.
J Leukoc Biol ; 109(4): 777-791, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32881070

RESUMO

Chemokines play a crucial role in combating microbial infection by recruiting blood neutrophils to infected tissue. In mice, the chemokines Cxcl1/KC and Cxcl2/MIP2 fulfill this role. Cxcl1 and Cxcl2 exist as monomers and dimers, and exert their function by activating the Cxcr2 receptor and binding glycosaminoglycans (GAGs). Here, we characterized Cxcr2 G protein and ß-arrestin activities, and GAG heparan sulfate (HS) interactions of Cxcl1 and Cxcl2 and of the trapped dimeric variants. To understand how Cxcr2 and GAG interactions impact in vivo function, we characterized their neutrophil recruitment activity to the peritoneum, Cxcr2 and CD11b levels on peritoneal and blood neutrophils, and transport profiles out of the peritoneum. Cxcl2 variants compared with Cxcl1 variants were more potent for Cxcr2 activity. Native Cxcl1 compared with native Cxcl2 and dimers compared with native proteins bound HS with higher affinity. Interestingly, recruitment activity between native Cxcl1 and Cxcl2, between dimers, and between the native protein and the dimer could be similar or very different depending on the dose or the time point. These data indicate that peritoneal neutrophil recruitment cannot be solely attributed to Cxcr2 or GAG interactions, and that the relationship between recruited neutrophils, Cxcr2 activation, GAG interactions, and chemokine levels is complex and highly context dependent. We propose that the ability of Cxcl1 and Cxcl2 to reversibly exist as monomers and dimers and differences in their Cxcr2 activity and GAG interactions coordinate neutrophil recruitment and activation, which play a critical role for successful resolution of inflammation.


Assuntos
Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Glicosaminoglicanos/metabolismo , Infiltração de Neutrófilos , Receptores de Interleucina-8B/metabolismo , Sequência de Aminoácidos , Animais , Células da Medula Óssea/citologia , Antígeno CD11b/metabolismo , Feminino , Cinética , Camundongos Endogâmicos BALB C , Peritônio/citologia , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Receptores de Interleucina-8B/química
11.
iScience ; 23(12): 101858, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33344917

RESUMO

Chemokines are unusual class-A G protein-coupled receptor agonists because of their large size (∼10 kDa) and binding at two distinct receptor sites: N-terminal domain (Site-I, unique to chemokines) and a groove defined by extracellular loop/transmembrane helices (Site-II, shared with all small molecule class-A ligands). Structures and sequence analysis reveal that the receptor N-terminal domains (N-domains) are flexible and contain intrinsic disorder. Using a hybrid NMR-MD approach, we characterized the role of Site-I interactions for the CXCL8-CXCR1 pair. NMR data indicate that the CXCR1 N-domain becomes structured on binding and that the binding interface is extensive with 30% CXCL8 residues participating in this initial interaction. MD simulations indicate that CXCL8 bound at Site-I undergoes extensive reorganization on engaging Site-II with several residues initially engaged at Site-I also engaging at Site-II. We conclude that structural plasticity of Site-I interactions plays an active role in driving ligand recognition by a chemokine receptor.

12.
Front Immunol ; 11: 660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391006

RESUMO

Proteoglycans (PGs), present in diverse environments, such as the cell membrane surface, extracellular milieu, and intracellular granules, are fundamental to life. Sulfated glycosaminoglycans (GAGs) are covalently attached to the core protein of proteoglycans. PGs are complex structures, and are diverse in terms of amino acid sequence, size, shape, and in the nature and number of attached GAG chains, and this diversity is further compounded by the phenomenal diversity in GAG structures. Chemokines play vital roles in human pathophysiology, from combating infection and cancer to leukocyte trafficking, immune surveillance, and neurobiology. Chemokines mediate their function by activating receptors that belong to the GPCR class, and receptor interactions are regulated by how, when, and where chemokines bind GAGs. GAGs fine-tune chemokine function by regulating monomer/dimer levels and chemotactic/haptotactic gradients, which are also coupled to how they are presented to their receptors. Despite their small size and similar structures, chemokines show a range of GAG-binding geometries, affinities, and specificities, indicating that chemokines have evolved to exploit the repertoire of chemical and structural features of GAGs. In this review, we summarize the current status of research on how GAG interactions regulate ELR-chemokine activation of CXCR1 and CXCR2 receptors, and discuss knowledge gaps that must be overcome to establish causal relationships governing the impact of GAG interactions on chemokine function in human health and disease.


Assuntos
Modelos Moleculares , Proteoglicanas/metabolismo , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Animais , Movimento Celular , Humanos , Imunidade Celular , Vigilância Imunológica , Ligação Proteica , Proteoglicanas/genética , Transdução de Sinais , Relação Estrutura-Atividade
13.
Pediatr Res ; 87(5): 847-852, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31756731

RESUMO

BACKGROUND: Fetal swallowing of human amniotic fluid (hAF) containing trophic factors (TFs) promotes gastrointestinal tract (GIT) development. Preterm birth interrupts hAF swallowing, which may increase the risk of necrotizing enterocolitis (NEC). Postnatally, it is difficult to replicate fetal swallowing of hAF due to volume. We aimed to evaluate whether hAF lyophilization is feasible and its effect on hAF-borne TFs. METHODS: We collected hAF (n = 16) from uncomplicated pregnancies. hAF was divided into three groups: unprocessed control (C), concentration by microfiltration (F), and by dialysis and lyophilization (L). EGF, HGF, GM-CSF, and TGF-α were measured in each group by multiplex assay. Bioavailability of TFs was measured by proliferation and LPS-induced IL-8 production by intestinal epithelial cells FHs74. RESULTS: After dialysis/lyophilization, GM-CSF and TGF-α were preserved with partial loss of EGF and HGF. hAF increased cell proliferation and reduced LPS-induced IL-8 production compared to medium alone. Compared to control, dialysis/lyophilization and filtration of hAF increased FHs74 cell proliferation (p < 0.001) and decreased LPS-induced IL-8 production (p < 0.01). CONCLUSIONS: Lyophilization and filtration of hAF is feasible with partial loss of TFs but maintains and even improves bioavailability of TFs measured by proliferation and LPS-induced IL-8 production by FHs74.


Assuntos
Líquido Amniótico/metabolismo , Enterocolite Necrosante/metabolismo , Liofilização , Trato Gastrointestinal/embriologia , Líquido Amniótico/química , Proliferação de Células , Criopreservação , Deglutição , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação , Interleucina-8/metabolismo , Gravidez , Fator de Crescimento Transformador alfa/metabolismo
14.
J Biol Chem ; 294(43): 15650-15661, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31455633

RESUMO

Chemokines play diverse roles in human pathophysiology, ranging from trafficking leukocytes and immunosurveillance to the regulation of metabolism and neural function. Chemokine function is intimately coupled to binding tissue glycosaminoglycans (GAGs), heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS). Currently, very little is known about how the structural features and sequences of a given chemokine, the structure and sulfation pattern of a given GAG, and structural differences among GAGs and among chemokines impact binding interactions. In this study, we used solution NMR spectroscopy to characterize the binding interactions of two related neutrophil-activating chemokines, CXCL1 and CXCL5, with HS, CS, and DS. For both chemokines, the dimer bound all three GAGs with higher affinity than did the monomer, and affinities of the chemokines for CS and DS were lower than for HS. NMR-based structural models reveal diverse binding geometries and show that the binding surfaces for each of the three GAGs were different between the two chemokines. However, a given chemokine had similar binding interactions with CS and DS that were different from HS. Considering the fact that CXCL1 and CXCL5 activate the same CXCR2 receptor, we conclude that GAG interactions play a role in determining the nature of chemokine gradients, levels of free chemokine available for receptor activation, how chemokines bind their receptors, and that differences in these interactions determine chemokine-specific function.


Assuntos
Quimiocinas/química , Quimiocinas/metabolismo , Sulfatos de Condroitina/metabolismo , Dermatan Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Sulfatos de Condroitina/química , Dermatan Sulfato/química , Heparitina Sulfato/química , Modelos Moleculares , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética
16.
Cell Signal ; 54: 69-80, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30465827

RESUMO

Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and ß-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. ß-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and ß-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. ß-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/ß-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/ß-arrestin axis and neutrophil function.


Assuntos
Quimiocinas CXC , Proteínas de Ligação ao GTP/metabolismo , Neutrófilos , Receptores CXCR , beta-Arrestinas/metabolismo , Animais , Quimiocinas CXC/química , Quimiocinas CXC/metabolismo , Humanos , Camundongos , Neutrófilos/citologia , Neutrófilos/metabolismo , Ligação Proteica , Receptores CXCR/química , Receptores CXCR/metabolismo , Transdução de Sinais
17.
Molecules ; 23(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384436

RESUMO

Interleukin-8 (CXCL8), a potent neutrophil-activating chemokine, exerts its function by activating the CXCR1 receptor that belongs to class A G protein-coupled receptors (GPCRs). Receptor activation involves interactions between the CXCL8 N-terminal loop and CXCR1 N-terminal domain (N-domain) residues (Site-I) and between the CXCL8 N-terminal and CXCR1 extracellular/transmembrane residues (Site-II). CXCL8 exists in equilibrium between monomers and dimers, and it is known that the monomer binds CXCR1 with much higher affinity and that Site-I interactions are largely responsible for the differences in monomer vs. dimer affinity. Here, using backbone 15N-relaxation nuclear magnetic resonance (NMR) data, we characterized the dynamic properties of the CXCL8 monomer and the CXCR1 N-domain in the free and bound states. The main chain of CXCL8 appears largely rigid on the picosecond time scale as evident from high order parameters (S²). However, on average, S² are higher in the bound state. Interestingly, several residues show millisecond-microsecond (ms-µs) dynamics only in the bound state. The CXCR1 N-domain is unstructured in the free state but structured with significant dynamics in the bound state. Isothermal titration calorimetry (ITC) data indicate that both enthalpic and entropic factors contribute to affinity, suggesting that increased slow dynamics in the bound state contribute to affinity. In sum, our data indicate a critical and complex role for dynamics in driving CXCL8 monomer-CXCR1 Site-I interactions.


Assuntos
Interleucina-8/química , Complexos Multiproteicos/química , Receptores de Interleucina-8A/química , Termodinâmica , Sequência de Aminoácidos/genética , Humanos , Interleucina-8/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos/genética , Mapeamento de Interação de Proteínas , Multimerização Proteica , Receptores de Interleucina-8A/genética
18.
Biochemistry ; 57(41): 5969-5977, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30230320

RESUMO

Hydrogen-bonding and ionic interactions play fundamental roles in macromolecular recognition and function. In contrast to lysines and arginines, how histidines mediate these interactions is less well-understood due to the unique properties of its side chain imidazole that include an aromatic ring with two titratable nitrogens, a p Ka that can vary significantly, and the ability to exist in three distinct forms: protonated imidazolium and two tautomeric neutral (Nδ1 and Nε2) states. Here, we characterized the structural features of histidines in the chemokines CXCL8 and CXCL1 in the free, GAG heparin-bound, and CXCR2 receptor N-terminal domain-bound states using solution NMR spectroscopy. CXCL8 and CXCL1 share two conserved histidines, one in the N-loop and the other in the 30s loop. In CXCL8, both histidines exist in the Nε2 tautomeric state in the free, GAG-bound, and receptor-bound forms. On the other hand, in unliganded CXCL1, each of the two histidines exists in two states, as the neutral Nε2 tautomer and charged imidazolium. Further, both histidines exclusively exist as the imidazolium in the GAG-bound and as the Nε2 tautomer in the receptor-bound forms. The N-loop histidine alone in both chemokines is involved in direct GAG and receptor interactions, indicating the role of the 30s loop varies between the chemokines. Our observation that the structural features of conserved histidines and their functional role in two related proteins can be quite different is novel. We further propose that directly probing the imidazole structural features is essential to fully appreciate the molecular basis of histidine function.


Assuntos
Quimiocina CXCL1/química , Heparina/química , Interleucina-8/química , Receptores de Interleucina-8B/química , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Estrutura Secundária de Proteína , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
19.
J Biol Chem ; 293(46): 17817-17828, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30257866

RESUMO

Keratinocyte-derived chemokine (KC or mCXCL1) and macrophage inflammatory protein 2 (MIP2 or mCXCL2) play nonredundant roles in trafficking blood neutrophils to sites of infection and injury. The functional responses of KC and MIP2 are intimately coupled to their interactions with glycosaminoglycans (GAGs). GAG interactions orchestrate chemokine concentration gradients and modulate receptor activity, which together regulate neutrophil trafficking. Here, using NMR, molecular dynamics (MD) simulations, and isothermal titration calorimetry (ITC), we characterized the molecular basis of KC and MIP2 binding to the GAG heparin. Both chemokines reversibly exist as monomers and dimers, and the NMR analysis indicates that the dimer binds heparin with higher affinity. The ITC experiments indicate a stoichiometry of two GAGs per KC or MIP2 dimer and that the enthalpic and entropic contributions vary significantly between the two chemokine-heparin complexes. NMR-based structural models of heparin-KC and heparin-MIP2 complexes reveal that different combinations of residues from the N-loop, 40s turn, ß3-strand, and C-terminal helix form a binding surface within a monomer and that both conserved residues and residues unique to a particular chemokine mediate the binding interactions. MD simulations indicate significant residue-specific differences in their contribution to binding and affinity for a given chemokine and between chemokines. On the basis of our observations that KC and MIP2 bind to GAG via distinct molecular interactions, we propose that the differences in these GAG interactions lead to differences in neutrophil recruitment and play nonoverlapping roles in resolution of inflammation.


Assuntos
Quimiocina CXCL1/metabolismo , Quimiocina CXCL2/metabolismo , Heparina/metabolismo , Animais , Sítios de Ligação , Calorimetria , Quimiocina CXCL1/química , Quimiocina CXCL2/química , Heparina/química , Ligação de Hidrogênio , Camundongos , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica
20.
Sci Rep ; 8(1): 12289, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115951

RESUMO

Glycosaminoglycans (GAGs) bind a large array of proteins and mediate fundamental and diverse roles in human physiology. Ion pair interactions between protein lysines/arginines and GAG sulfates/carboxylates mediate binding. Neutrophil-activating chemokines (NAC) are GAG-binding proteins, and their sequences reveal high selectivity for lysines over arginines indicating they are functionally not equivalent. NAC binding to GAGs impacts gradient formation, receptor functions, and endothelial activation, which together regulate different components of neutrophil migration. We characterized the consequence of mutating lysine to arginine in NAC CXCL8, a well-characterized GAG-binding protein. We chose three lysines - two highly conserved lysines (K20 and K64) and a CXCL8-specific lysine (K67). Interestingly, the double K64R/K20R and K64R/K67R mutants are highly impaired in recruiting neutrophils in a mouse model. Further, both the mutants bind GAG heparin with higher affinity but show similar receptor activity. NMR and MD studies indicate that the structures are essentially identical to the WT, but the mutations alter the network of intramolecular ion pair interactions. These observations collectively indicate that the reduced in vivo recruitment is due to altered GAG interactions, higher GAG binding affinity can be detrimental, and specificity of lysines fine-tunes in vivo GAG interactions and function.


Assuntos
Arginina/química , Glicosaminoglicanos/química , Interleucina-8/química , Lisina/química , Sequência de Aminoácidos , Animais , Heparina/química , Ligação de Hidrogênio , Camundongos , Simulação de Dinâmica Molecular , Mutação , Infiltração de Neutrófilos , Ligação Proteica , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA