Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102205, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38817682

RESUMO

ß-thalassemia/HbE results from mutations in the ß-globin locus that impede the production of functional adult hemoglobin. Base editors (BEs) could facilitate the correction of the point mutations with minimal or no indel creation, but its efficiency and bystander editing for the correction of ß-thalassemia mutations in coding and non-coding regions remains unexplored. Here, we screened BE variants in HUDEP-2 cells for their ability to correct a spectrum of ß-thalassemia mutations that were integrated into the genome as fragments of HBB. The identified targets were introduced into their endogenous genomic location using BEs and Cas9/homology-directed repair (HDR) to create cellular models with ß-thalassemia/HbE. These ß-thalassemia/HbE models were then used to assess the efficiency of correction in the native locus and functional ß-globin restoration. Most bystander edits produced near target sites did not interfere with adult hemoglobin expression and are not predicted to be pathogenic. Further, the effectiveness of BE was validated for the correction of the pathogenic HbE variant in severe ß0/ßE-thalassaemia patient cells. Overall, our study establishes a novel platform to screen and select optimal BE tools for therapeutic genome editing by demonstrating the precise, efficient, and scarless correction of pathogenic point mutations spanning multiple regions of HBB including the promoter, intron, and exons.

2.
Mol Ther ; 32(3): 663-677, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38273654

RESUMO

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for ß-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters. Inspired by this natural phenomenon, we used both CRISPR-Cas9 and base editing at specific ZnF domains and assessed the impacts on HbF production and hematopoietic differentiation. Generating indels in the various ZnF domains by CRISPR-Cas9 prevented the binding of BCL11A-XL to its site in the HBG1/2 promoters and elevated the HbF levels but affected normal hematopoiesis. Far fewer side effects were observed with base editing- for instance, erythroid maturation in vitro was near normal. However, we observed a modest reduction in HSPC engraftment and a complete loss of B cell development in vivo, presumably because current base editing is not capable of precisely recapitulating the mutations found in patients with BCL11A-XL-associated neurodevelopment disorders. Overall, our results reveal that disrupting different ZnF domains has different effects. Disrupting ZnF4 elevated HbF levels significantly while leaving many other erythroid target genes unaffected, and interestingly, disrupting ZnF6 also elevated HbF levels, which was unexpected because this region does not directly interact with the HBG1/2 promoters. This first structure/function analysis of ZnF4-6 provides important insights into the domains of BCL11A-XL that are required to repress fetal globin expression and provide framework for exploring the introduction of natural mutations that may enable the derepression of single gene while leaving other functions unaffected.


Assuntos
Edição de Genes , gama-Globinas , Humanos , Edição de Genes/métodos , gama-Globinas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Dedos de Zinco , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo
3.
Sci Rep ; 13(1): 8743, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37253762

RESUMO

Spike glycoprotein of SARS-CoV-2 variants plays a critical role in infection and transmission through its interaction with human angiotensin converting enzyme 2 (hACE2) receptors. Prior findings using molecular docking and biomolecular studies reported varied findings on the difference in the interactions among the spike variants with the hACE2 receptors. Hence, it is a prerequisite to understand these interactions in a more precise manner. To this end, firstly, we performed ELISA with trimeric spike glycoproteins of SARS-CoV-2 variants including Wuhan Hu-1(Wild), Delta, C.1.2 and Omicron. Further, to study the interactions in a more specific manner by mimicking the natural infection, we developed hACE2 receptors expressing HEK-293T cell line, evaluated their binding efficiencies and competitive binding of spike variants with D614G spike pseudotyped virus. In line with the existing findings, we observed that Omicron had higher binding efficiency compared to Delta in both ELISA and Cellular models. Intriguingly, we found that cellular models could differentiate the subtle differences between the closely related C.1.2 and Delta in their binding to hACE2 receptors. Our study using the cellular model provides a precise method to evaluate the binding interactions between spike sub-lineages to hACE2 receptors.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2/genética , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/genética , Ligação Proteica
4.
Sci Rep ; 12(1): 14033, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982069

RESUMO

Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.


Assuntos
Vetores Genéticos , Lentivirus , Animais , Linhagem Celular Tumoral , Linhagem da Célula/genética , Proteínas de Ligação a DNA/genética , Vetores Genéticos/genética , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Camundongos , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/metabolismo , Transdução Genética
5.
Methods Mol Biol ; 2429: 307-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35507170

RESUMO

Ex vivo genetic manipulation of autologous hematopoietic stem and progenitor cells (HSPCs) is a viable strategy for the treatment of hematologic and primary immune disorders. Targeted genome editing of HSPCs using the CRISPR-Cas9 system provides an effective platform to edit the desired genomic locus for therapeutic purposes with minimal off-target effects. In this chapter, we describe the detailed methodology for the CRISPR-Cas9 mediated gene knockout, deletion, addition, and correction in human HSPCs by viral and nonviral approaches. We also present a comprehensive protocol for the analysis of genome modified HSPCs toward the erythroid and megakaryocyte lineage in vitro and the long-term multilineage reconstitution capacity in the recently developed NBSGW mouse model that supports human erythropoiesis.


Assuntos
Sistemas CRISPR-Cas , Transplante de Células-Tronco Hematopoéticas , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas , Camundongos , Transplante Autólogo
6.
Elife ; 112022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35147495

RESUMO

Naturally occurring point mutations in the HBG promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous HBG proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of HBG promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC). We further demonstrated in vitro that the introduction of -123T > C and -124T > C HPFH-like mutations drives gamma-globin expression by creating a de novo binding site for KLF1. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter and identified additional targets for therapeutic upregulation of fetal hemoglobin.


Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Edição de Genes/métodos , Adenina/metabolismo , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citosina/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mutação Puntual , Regiões Promotoras Genéticas , Globinas beta/genética , Talassemia beta/genética , gama-Globinas/genética
7.
Hum Gene Ther ; 33(3-4): 188-201, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34486377

RESUMO

CD34+CD133+CD90+ hematopoietic stem cells (HSCs) are responsible for long-term multilineage hematopoiesis, and the high frequency of gene-modified HSCs is crucial for the success of hematopoietic stem and progenitor cell (HSPC) gene therapy. However, the ex vivo culture and gene manipulation steps of HSPC graft preparation significantly reduce the frequency of HSCs, thus necessitating large doses of HSPCs and reagents for the manipulation. In this study, we identified a combination of small molecules, Resveratrol, UM729, and SR1 that preferentially expands CD34+CD133+CD90+ HSCs over other subpopulations of adult HSPCs in ex vivo culture. The preferential expansion enriches the HSCs in ex vivo culture, enhances the adhesion, and results in a sixfold increase in the long-term engraftment in NSG mice. Further, the culture-enriched HSCs are more responsive to gene modification by lentiviral transduction and gene editing, increasing the frequency of gene-modified HSCs up to 10-fold in vivo. The yield of gene-modified HSCs obtained by the culture enrichment is similar to the sort-purification of HSCs and superior to Cyclosporin-H treatment. Our study addresses a critical challenge of low frequency of gene modified HSCs in HSPC graft by developing and demonstrating a facile HSPC culture condition that increases the frequency of gene-modified cells in vivo. This strategy will improve the outcome of HSPC gene therapy and also simplify the gene manipulation process.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Sangue Fetal , Terapia Genética , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
8.
Front Genome Ed ; 4: 1085111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605051

RESUMO

Sickle cell anaemia (SCA) is one of the common autosomal recessive monogenic disorders, caused by a transverse point mutation (GAG > GTG) at the sixth codon of the beta-globin gene, which results in haemolytic anaemia due to the fragile RBCs. Recent progress in genome editing has gained attention for the therapeutic cure for SCA. Direct correction of SCA mutation by homology-directed repair relies on a double-strand break (DSB) at the target site and carries the risk of generating beta-thalassaemic mutations if the editing is not error-free. On the other hand, base editors cannot correct the pathogenic SCA mutation resulting from A > T base transversion. Prime editor (PE), the recently described CRISPR/Cas 9 based gene editing tool that enables precise gene manipulations without DSB and unintended nucleotide changes, is a viable approach for the treatment of SCA. However, the major limitation with the use of prime editing is the lower efficiency especially in human erythroid cell lines and primary cells. To overcome these limitations, we developed a modular lenti-viral based prime editor system and demonstrated its use for the precise modelling of SCA mutation and its subsequent correction in human erythroid cell lines. We achieved highly efficient installation of SCA mutation (up to 72%) and its subsequent correction in human erythroid cells. For the first time, we demonstrated the functional restoration of adult haemoglobin without any unintended nucleotide changes or indel formations using the PE2 system. We also validated that the off-target effects mediated by the PE2 system is very minimal even with very efficient on-target conversion, making it a safe therapeutic option. Taken together, the modular lenti-viral prime editor system developed in this study not only expands the range of cell lines targetable by prime editor but also improves the efficiency considerably, enabling the use of prime editor for myriad molecular, genetic, and translational studies.

9.
Cells ; 10(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804564

RESUMO

Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.


Assuntos
Células Precursoras Eritroides/metabolismo , Leucócitos Mononucleares/metabolismo , Diferenciação Celular , Linhagem Celular , Humanos
10.
Biomed Pharmacother ; 108: 15-26, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30212708

RESUMO

Increasing studies have implicated superfluous production of reactive oxygen species (ROS) as a significant factor in the progress of neurodegenerative disorders ranging from ischemic stroke to amyotrophic lateral sclerosis. The possible mechanisms relating to oxidative stress and neurodegeneration are yet to be thoroughly understood. Rutin, a flavonoid, has been well documented for its beneficial and pharmacological activities against diverse targets. However, the mechanism involved in the beneficial effects of rutin against neurodegeneration still remains unclear. Our study investigates the concentration switch effects of rutin on differentiated human neuroblastoma cells (IMR32) in vitro to unveil the possible mechanism of its action. IMR32 cells were differentiated using retinoic acid and challenged with different doses of rutin for 24 h duration to study the influence of ROS on differentiated neuronal cells and ROS-mediated apoptosis. The study showed that the high (100 µM) and low (100 nM and 10µM) rutin concentrations significantly avert ROS generation by two different mechanisms, by enhancing apoptosis through the modulation of levels of Bcl2, Caspase-3, survivin and its antioxidant activity via stress-related proteins, JNK and p38 MAPK. Our study suggests that rutin is a multi-targeted therapeutic and preventive agent that may act as an adjuvant complementary therapeutic molecule to treat oxidative stress-mediated neurodegeneration.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Rutina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA