Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(2): 225-234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509870

RESUMO

Delivering inherently stable lithium-ion batteries is a key challenge. Electrochemical lithium insertion and extraction often severely alters the electrode crystal chemistry, and this contributes to degradation with electrochemical cycling. Moreover, electrodes do not act in isolation, and this can be difficult to manage, especially in all-solid-state batteries. Therefore, discovering materials that can reversibly insert and extract large quantities of the charge carrier (Li+), that is, high capacity, with inherent stability during electrochemical cycles is necessary. Here lithium-excess vanadium oxides with a disordered rocksalt structure are examined as high-capacity and long-life positive electrode materials. Nanosized Li8/7Ti2/7V4/7O2 in optimized liquid electrolytes deliver a large reversible capacity of over 300 mAh g-1 with two-electron V3+/V5+ cationic redox, reaching 750 Wh kg-1 versus metallic lithium. Critically, highly reversible Li storage and no capacity fading for 400 cycles were observed in all-solid-state batteries with a sulfide-based solid electrolyte. Operando synchrotron X-ray diffraction combined with high-precision dilatometry reveals excellent reversibility and a near dimensionally invariable character during electrochemical cycling, which is associated with reversible vanadium migration on lithiation and delithiation. This work demonstrates an example of an electrode/electrolyte couple that produces high-capacity and long-life batteries enabled by multi-electron transition metal redox with a structure that is near invariant during cycling.

2.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34815337

RESUMO

The development of inherently safe energy devices is a key challenge, and aqueous Li-ion batteries draw large attention for this purpose. Due to the narrow electrochemical stable potential window of aqueous electrolytes, the energy density and the selection of negative electrode materials are significantly limited. For achieving durable and high-energy aqueous Li-ion batteries, the development of negative electrode materials exhibiting a large capacity and low potential without triggering decomposition of water is crucial. Herein, a type of a negative electrode material (i.e., Li x Nb2/7Mo3/7O2) is proposed for high-energy aqueous Li-ion batteries. Li x Nb2/7Mo3/7O2 delivers a large capacity of ∼170 mA ⋅ h ⋅ g-1 with a low operating potential range of 1.9 to 2.8 versus Li/Li+ in 21 m lithium bis(trifluoromethanesulfonyl)amide (LiTFSA) aqueous electrolyte. A full cell consisting of Li1.05Mn1.95O4/Li9/7Nb2/7Mo3/7O2 presents high energy density of 107 W ⋅ h ⋅ kg-1 as the maximum value in 21 m LiTFSA aqueous electrolyte, and 73% in capacity retention is achieved after 2,000 cycles. Furthermore, hard X-ray photoelectron spectroscopy study reveals that a protective surface layer is formed at the surface of the negative electrode, by which the high-energy and durable aqueous batteries are realized with Li x Nb2/7Mo3/7O2 This work combines a high capacity with a safe negative electrode material through delivering the Mo-based oxide with unique nanosized and metastable characters.

3.
Chem Commun (Camb) ; 57(22): 2756-2759, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33596302

RESUMO

Na0.67Cr0.33Mg0.17Ti0.5O2 with a P2-type layered structure has been synthesized and examined as a negative electrode material for rechargeable sodium batteries. The layered oxide delivers a reversible capacity of >90 mA h g-1, which corresponds to >95% of the theoretical capacity with excellent cyclability for >450 cycles.

4.
Small ; 16(12): e1902462, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31482668

RESUMO

To realize the development of rechargeable sodium batteries, new positive electrode materials without less abundant elements are explored. Enrichment of sodium contents in host structures is required to increase the theoretical capacity as electrode materials, and therefore Na-excess compounds are systematically examined in a binary system of Na2 TiO3 -NaMnO2 . After several trials, synthesis of Na-excess compounds with a cation disordered rocksalt structure is successful by adapting a mechanical milling method. Among the tested electrode materials, Na1.14 Mn0.57 Ti0.29 O2 in this binary system delivers a large reversible capacity of ≈200 mA h g-1 , originating from reversible redox reactions of cationic Mn3+ /Mn4+ and anionic O2- /On - redox confirmed by X-ray absorption spectroscopy. Holes in oxygen 2p orbitals, which are formed by electrochemical oxidation, are energetically stabilized by electron donation from Mn ions. Moreover, reversibility of anionic redox is significantly improved compared with a former study on a binary system of Na3 NbO3 -NaMnO2 tested as model electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA