Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(18): eadi3653, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38691599

RESUMO

Manipulating the nanostructure of materials is critical for numerous applications in electronics, magnetics, and photonics. However, conventional methods such as lithography and laser writing require cleanroom facilities or leave residue. We describe an approach to creating atomically sharp line defects in hexagonal boron nitride (hBN) at room temperature by direct optical phonon excitation with a mid-infrared pulsed laser from free space. We term this phenomenon "unzipping" to describe the rapid formation and growth of a crack tens of nanometers wide from a point within the laser-driven region. Formation of these features is attributed to the large atomic displacement and high local bond strain produced by strongly driving the crystal at a natural resonance. This process occurs only via coherent phonon excitation and is highly sensitive to the relative orientation of the crystal axes and the laser polarization. Its cleanliness, directionality, and sharpness enable applications such as polariton cavities, phonon-wave coupling, and in situ flake cleaving.

2.
Nat Mater ; 22(7): 838-843, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36997689

RESUMO

Plasmon polaritons in van der Waals materials hold promise for various photonics applications1-4. The deterministic imprinting of spatial patterns of high carrier density in plasmonic cavities and nanoscale circuitry can enable the realization of advanced nonlinear nanophotonic5 and strong light-matter interaction platforms6. Here we demonstrate an oxidation-activated charge transfer strategy to program ambipolar low-loss graphene plasmonic structures. By covering graphene with transition-metal dichalcogenides and subsequently oxidizing the transition-metal dichalcogenides into transition-metal oxides, we activate charge transfer rooted in the dissimilar work functions between transition-metal oxides and graphene. Nano-infrared imaging reveals ambipolar low-loss plasmon polaritons at the transition-metal-oxide/graphene interfaces. Further, by inserting dielectric van der Waals spacers, we can precisely control the electron and hole densities induced by oxidation-activated charge transfer and achieve plasmons with a near-intrinsic quality factor. Using this strategy, we imprint plasmonic cavities with laterally abrupt doping profiles with nanoscale precision and demonstrate plasmonic whispering-gallery resonators based on suspended graphene encapsulated in transition-metal oxides.


Assuntos
Grafite , Elétrons , Óxidos
3.
Nat Commun ; 13(1): 3719, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764651

RESUMO

Polaritons in hyperbolic van der Waals materials-where principal axes have permittivities of opposite signs-are light-matter modes with unique properties and promising applications. Isofrequency contours of hyperbolic polaritons may undergo topological transitions from open hyperbolas to closed ellipse-like curves, prompting an abrupt change in physical properties. Electronically-tunable topological transitions are especially desirable for future integrated technologies but have yet to be demonstrated. In this work, we present a doping-induced topological transition effected by plasmon-phonon hybridization in graphene/α-MoO3 heterostructures. Scanning near-field optical microscopy was used to image hybrid polaritons in graphene/α-MoO3. We demonstrate the topological transition and characterize hybrid modes, which can be tuned from surface waves to bulk waveguide modes, traversing an exceptional point arising from the anisotropic plasmon-phonon coupling. Graphene/α-MoO3 heterostructures offer the possibility to explore dynamical topological transitions and directional coupling that could inspire new nanophotonic and quantum devices.

4.
Nano Lett ; 21(23): 10122-10126, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34792368

RESUMO

Quantum computers can potentially achieve an exponential speedup versus classical computers on certain computational tasks, recently demonstrated in superconducting qubit processors. However, the capacitor electrodes that comprise these qubits must be large in order to avoid lossy dielectrics. This tactic hinders scaling by increasing parasitic coupling among circuit components, degrading individual qubit addressability, and limiting the spatial density of qubits. Here, we take advantage of the unique properties of van der Waals (vdW) materials to reduce the qubit area by >1000 times while preserving the capacitance while maintaining quantum coherence. Our qubits combine conventional aluminum-based Josephson junctions with parallel-plate capacitors composed of crystalline layers of superconducting niobium diselenide and insulating hexagonal boron nitride. We measure a vdW transmon T1 relaxation time of 1.06 µs, demonstrating a path to achieve high-qubit-density quantum processors with long coherence times, and the broad utility of layered heterostructures in low-loss, high-coherence quantum devices.

5.
J Phys Condens Matter ; 34(10)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34847535

RESUMO

Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the constituent two-dimensional (2D) layered materials and the lack of dangling bonds at their atomically sharp interfaces. However, new fabrication and characterization techniques are required to determine whether these structures can achieve low loss in the microwave regime. Here we report the fabrication of superconducting microwave resonators using NbSe2that achieve a quality factorQ> 105. This value sets an upper bound that corresponds to a resistance of⩽192µΩwhen considering the additional loss introduced by integrating NbSe2into a standard transmon circuit. This work demonstrates the compatibility of 2D layered materials with high-quality microwave quantum devices.

6.
Proc Natl Acad Sci U S A ; 118(48)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34819380

RESUMO

Chiral Weyl fermions with linear energy-momentum dispersion in the bulk accompanied by Fermi-arc states on the surfaces prompt a host of enticing optical effects. While new Weyl semimetal materials keep emerging, the available optical probes are limited. In particular, isolating bulk and surface electrodynamics in Weyl conductors remains a challenge. We devised an approach to the problem based on near-field photocurrent imaging at the nanoscale and applied this technique to a prototypical Weyl semimetal TaIrTe4 As a first step, we visualized nano-photocurrent patterns in real space and demonstrated their connection to bulk nonlinear conductivity tensors through extensive modeling augmented with density functional theory calculations. Notably, our nanoscale probe gives access to not only the in-plane but also the out-of-plane electric fields so that it is feasible to interrogate all allowed nonlinear tensors including those that remained dormant in conventional far-field optics. Surface- and bulk-related nonlinear contributions are distinguished through their "symmetry fingerprints" in the photocurrent maps. Robust photocurrents also appear at mirror-symmetry breaking edges of TaIrTe4 single crystals that we assign to nonlinear conductivity tensors forbidden in the bulk. Nano-photocurrent spectroscopy at the boundary reveals a strong resonance structure absent in the interior of the sample, providing evidence for elusive surface states.

7.
ACS Appl Mater Interfaces ; 13(1): 1930-1942, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33351577

RESUMO

The development of a controllable, selective, and repeatable etch process is crucial for controlling the layer thickness and patterning of two-dimensional (2D) materials. However, the atomically thin dimensions and high structural similarity of different 2D materials make it difficult to adapt conventional thin-film etch processes. In this work, we propose a selective, damage-free atomic layer etch (ALE) that enables layer-by-layer removal of monolayer WSe2 without altering the physical, optical, and electronic properties of the underlying layers. The etch uses a top-down approach where the topmost layer is oxidized in a self-limited manner and then removed using a selective etch. Using a comprehensive set of material, optical, and electrical characterization, we show that the quality of our ALE processed layers is comparable to that of pristine layers of similar thickness. The ALE processed WSe2 layers preserve their bright photoluminescence characteristics and possess high room-temperature hole mobilities of 515 cm2/V·s, essential for fabricating high-performance 2D devices. Further, using graphene as a testbed, we demonstrate the fabrication of ultra-clean 2D devices using a sacrificial monolayer WSe2 layer to protect the channel during processing, which is etched in the final process step in a technique we call sacrificial WSe2 with ALE processing (SWAP). The graphene transistors made using the SWAP technique demonstrate high room-temperature field-effect mobilities, up to 200,000 cm2/V·s, better than previously reported unencapsulated graphene devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA