Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 299(12): 105453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956771

RESUMO

The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.


Assuntos
Proteína I de Ligação a Poli(A) , Próstata , Proteínas Proto-Oncogênicas c-ets , Proteína EWS de Ligação a RNA , Humanos , Masculino , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Genoma Humano/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Ativação Transcricional , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
2.
Redox Biol ; 57: 102480, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36167027

RESUMO

Methamphetamine (METH) is an addictive illicit drug used worldwide that causes significant damage to blood vessels resulting in cardiovascular dysfunction. Recent studies highlight increased prevalence of cardiovascular disease (CVD) and associated complications including hypertension, vasospasm, left ventricular hypertrophy, and coronary artery disease in younger populations due to METH use. Here we report that METH administration in a mouse model of 'binge and crash' decreases cardiovascular function via cystathionine gamma lyase (CSE), hydrogen sulfide (H2S), nitric oxide (NO) (CSE/H2S/NO) dependent pathway. METH significantly reduced H2S and NO bioavailability in plasma and skeletal muscle tissues co-incident with a significant reduction in flow-mediated vasodilation (FMD) and blood flow velocity revealing endothelial dysfunction. METH administration also reduced cardiac ejection fraction (EF) and fractional shortening (FS) associated with increased tissue and perivascular fibrosis. Importantly, METH treatment selectively decreased CSE expression and sulfide bioavailability along with reduced eNOS phosphorylation and NO levels. Exogenous sulfide therapy or endothelial CSE transgenic overexpression corrected cardiovascular and associated pathological responses due to METH implicating a central molecular regulatory pathway for tissue pathology. These findings reveal that therapeutic intervention targeting CSE/H2S bioavailability may be useful in attenuating METH mediated cardiovascular disease.

3.
JACC Basic Transl Sci ; 7(4): 333-345, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35540096

RESUMO

Expression of a neuropilin-like protein, DCBLD2, is reduced in human calcific aortic valve disease (CAVD). DCBLD2-deficient mice develop bicuspid aortic valve (BAV) and CAVD, which is more severe in BAV mice compared with tricuspid littermates. In vivo and in vitro studies link this observation to up-regulated bone morphogenic protein (BMP)2 expression in the presence of DCBLD2 down-regulation, and enhanced BMP2 signaling in BAV, indicating that a combination of genetics and BAV promotes aortic valve calcification and stenosis. This pathway may be a therapeutic target to prevent CAVD progression in BAV.

4.
Vasc Med ; 27(1): 3-12, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34570637

RESUMO

Endothelium-derived nitric oxide (NO) is a mediator of angiogenesis. However, NO-mediated regulation of vasculogenesis remains largely unknown. In the present study, we show that the inhibition of NO significantly attenuated endothelial migration, ring formation, and tube formation. The contribution of nitric oxide synthase (NOS) enzymes during early vasculogenesis was assessed by evaluating endothelial NOS (eNOS) and inducible NOS (iNOS) mRNA expression during HH10-HH13 stages of chick embryo development. iNOS but not eNOS was expressed at HH12 and HH13 stages. We hypothesized that vasculogenic events are controlled by NOS-independent reduction of nitrite to NO under hypoxia during the very early phases of development. Semi-quantitative polymerase chain reaction analysis of hypoxia-inducible factor-1α (HIF-1α) showed higher expression at HH10 stage, after which a decrease was observed. This observation was in correlation with the nitrite reductase (NR) activity at HH10 stage. We observed a sodium nitrite-induced increase in NO levels at HH10, reaching a gradual decrease at HH13. The possible involvement of a HIF/NF-κB/iNOS signaling pathway in the process of early vasculogenesis is suggested by the inverse relationship observed between nitrite reduction and NOS activation between HH10 and HH13 stages. Further, we detected that NR-mediated NO production was inhibited by several NR inhibitors at the HH10 stage, whereas the inhibitors eventually became less effective at later stages. These findings suggest that the temporal dynamics of the NO source switches from NR to NOS in the extraembryonic area vasculosa, where both nitrite reduction and NOS activity are defined by hypoxia.


Assuntos
Óxido Nítrico Sintase Tipo III , Óxido Nítrico , Animais , Embrião de Galinha , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos , Transdução de Sinais
5.
J Funct Biomater ; 12(2)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205317

RESUMO

Electrical stimulation (ES) can serve as a therapeutic modality accelerating the healing of wounds, particularly chronic wounds which have impaired healing due to complications from underlying pathology. This review explores how ES affects the cellular mechanisms of wound healing, and its effectiveness in treating acute and chronic wounds. Literature searches with no publication date restrictions were conducted using the Cochrane Library, Medline, Web of Science, Google Scholar and PubMed databases, and 30 full-text articles met the inclusion criteria. In vitro and in vivo experiments investigating the effect of ES on the general mechanisms of healing demonstrated increased epithelialization, fibroblast migration, and vascularity around wounds. Six in vitro studies demonstrated bactericidal effects upon exposure to alternating and pulsed current. Twelve randomized controlled trials (RCTs) investigated the effect of pulsed current on chronic wound healing. All reviewed RCTs demonstrated a larger reduction in wound size and increased healing rate when compared to control groups. In conclusion, ES therapy can contribute to improved chronic wound healing and potentially reduce the financial burden associated with wound management. However, the variations in the wound characteristics, patient demographics, and ES parameters used across studies present opportunities for systematic RCT studies in the future.

6.
Theranostics ; 11(12): 5876-5888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897887

RESUMO

Inflammation plays a major role in the pathogenesis of several vascular pathologies, including abdominal aortic aneurysm (AAA). Evaluating the role of inflammation in AAA pathobiology and potentially outcome in vivo requires non-invasive tools for high-resolution imaging. We investigated the feasibility of X-ray computed tomography (CT) imaging of phagocytic activity using nanoparticle contrast agents to predict AAA outcome. Methods: Uptake of several nanoparticle CT contrast agents was evaluated in a macrophage cell line. The most promising agent, Exitron nano 12000, was further characterized in vitro and used for subsequent in vivo testing. AAA was induced in Apoe-/- mice through angiotensin II (Ang II) infusion for up to 4 weeks. Nanoparticle biodistribution and uptake in AAA were evaluated by CT imaging in Ang II-infused Apoe-/- mice. After imaging, the aortic tissue was harvested and used from morphometry, transmission electron microscopy and gene expression analysis. A group of Ang II-infused Apoe-/- mice underwent nanoparticle-enhanced CT imaging within the first week of Ang II infusion, and their survival and aortic external diameter were evaluated at 4 weeks to address the value of vessel wall CT enhancement in predicting AAA outcome. Results: Exitron nano 12000 showed specific uptake in macrophages in vitro. Nanoparticle accumulation was observed by CT imaging in tissues rich in mononuclear phagocytes. Aortic wall enhancement was detectable on delayed CT images following nanoparticle administration and correlated with vessel wall CD68 expression. Transmission electron microscopy ascertained the presence of nanoparticles in AAA adventitial macrophages. Nanoparticle-induced CT enhancement on images obtained within one week of AAA induction was predictive of AAA outcome at 4 weeks. Conclusions: By establishing the feasibility of CT-based molecular imaging of phagocytic activity in AAA, this study links the inflammatory signal on early time point images to AAA evolution. This readily available technology overcomes an important barrier to cross-sectional, longitudinal and outcome studies, not only in AAA, but also in other cardiovascular pathologies and facilitates the evaluation of modulatory interventions, and ultimately upon clinical translation, patient management.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Macrófagos/patologia , Fagócitos/patologia , Angiotensina II/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma da Aorta Abdominal/metabolismo , Apolipoproteínas E/metabolismo , Modelos Animais de Doenças , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Tomografia Computadorizada por Raios X/métodos
7.
J Med Chem ; 63(23): 15037-15049, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33206510

RESUMO

Macrophage elastase [matrix metalloproteinase (MMP)-12] is the most upregulated MMP in abdominal aortic aneurysm (AAA) and, hence, MMP-12-targeted imaging may predict AAA progression and rupture risk. Here, we report the design, synthesis, and evaluation of three novel hydroxamate-based selective MMP-12 inhibitors (CGA, CGA-1, and AGA) and the methodology to obtain MMP-12 selectivity from hydroxamate-based panMMP inhibitors. Also, we report two 99mTc-radiotracers, 99mTc-AGA-1 and 99mTc-AGA-2, derived from AGA. 99mTc-AGA-2 displayed faster blood clearance in mice and better radiochemical stability compared to 99mTc-AGA-1. Based on this, 99mTc-AGA-2 was chosen as the lead tracer and tested in murine AAA. 99mTc-AGA-2 uptake detected by autoradiography was significantly higher in AAA compared to normal aortic regions. Specific binding of the tracer to MMP-12 was demonstrated through ex vivo competition. Accordingly, this study introduces a novel family of selective MMP-12 inhibitors and tracers, paving the way for further development of these agents as therapeutic and imaging agents.


Assuntos
Ácidos Hidroxâmicos/farmacologia , Metaloproteinase 12 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/farmacologia , Oligopeptídeos/farmacologia , Compostos de Organotecnécio/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Animais , Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/metabolismo , Desenho de Fármacos , Humanos , Ácidos Hidroxâmicos/síntese química , Inibidores de Metaloproteinases de Matriz/síntese química , Camundongos Endogâmicos C57BL , Imagem Molecular/métodos , Estrutura Molecular , Oligopeptídeos/síntese química , Compostos de Organotecnécio/síntese química , Compostos Radiofarmacêuticos/síntese química , Relação Estrutura-Atividade
8.
Compr Physiol ; 9(3): 1213-1247, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31187898

RESUMO

Ischemic vascular remodeling occurs in response to stenosis or arterial occlusion leading to a change in blood flow and tissue perfusion. Altered blood flow elicits a cascade of molecular and cellular physiological responses leading to vascular remodeling of the macro- and micro-circulation. Although cellular mechanisms of vascular remodeling such as arteriogenesis and angiogenesis have been studied, therapeutic approaches in these areas have had limited success due to the complexity and heterogeneous constellation of molecular signaling events regulating these processes. Understanding central molecular players of vascular remodeling should lead to a deeper understanding of this response and aid in the development of novel therapeutic strategies. Hydrogen sulfide (H2 S) and nitric oxide (NO) are gaseous signaling molecules that are critically involved in regulating fundamental biochemical and molecular responses necessary for vascular growth and remodeling. This review examines how NO and H2 S regulate pathophysiological mechanisms of angiogenesis and arteriogenesis, along with important chemical and experimental considerations revealed thus far. The importance of NO and H2 S bioavailability, their synthesis enzymes and cofactors, and genetic variations associated with cardiovascular risk factors suggest that they serve as pivotal regulators of vascular remodeling responses. © 2019 American Physiological Society. Compr Physiol 9:1213-1247, 2019.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Óxido Nítrico/fisiologia , Remodelação Vascular/fisiologia , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Isquemia/terapia , Mutação , Neovascularização Patológica/fisiopatologia , Óxido Nítrico/química , Transdução de Sinais/fisiologia
9.
Int J Mol Sci ; 20(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866404

RESUMO

Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) plays crucial roles in cardiac homeostasis. Adult cardiomyocyte specific overexpression of eNOS confers protection against myocardial-reperfusion injury. However, the global effects of NO overexpression in developing cardiovascular system is still unclear. We hypothesized that nitric oxide overexpression affects the early migration of cardiac progenitor cells, vasculogenesis and function in a chick embryo. Vehicle or nitric oxide donor DEAN (500 mM) were loaded exogenously through a small window on the broad side of freshly laid egg and embryonic development tracked by live video-microscopy. At Hamburg Hamilton (HH) stage 8, the cardiac progenitor cells (CPC) were isolated and cell migration analysed by Boyden Chamber. The vascular bed structure and heart beats were compared between vehicle and DEAN treated embryos. Finally, expression of developmental markers such as BMP4, Shh, Pitx2, Noggin were measured using reverse transcriptase PCR and in-situ hybridization. The results unexpectedly showed that exogenous addition of pharmacological NO between HH stage 7⁻8 resulted in embryos with situs inversus in 28 out of 100 embryos tested. Embryos treated with NO inhibitor cPTIO did not have situs inversus, however 10 embryos treated with L-arginine showed a situs inversus phenotype. N-acetyl cysteine addition in the presence of NO failed to rescue situs inversus phenotype. The heart beat is normal (120 beats/min) although the vascular bed pattern is altered. Migration of CPCs in DEAN treated embryos is reduced by 60% compared to vehicle. BMP4 protein expression increases on the left side of the embryo compared to vehicle control. The data suggests that the NO levels in the yolk are important in turning of the heart during embryonic development. High levels of NO may lead to situs inversus condition in avian embryo by impairing cardiac progenitor cell migration through the NO-BMP4-cGMP axis.


Assuntos
Proteína Morfogenética Óssea 4/genética , Coração/fisiologia , Miócitos Cardíacos/citologia , Óxido Nítrico/farmacologia , Situs Inversus/induzido quimicamente , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Desenvolvimento Embrionário , Coração/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Microscopia de Vídeo , Miócitos Cardíacos/efeitos dos fármacos , Situs Inversus/genética , Regulação para Cima
10.
DNA Repair (Amst) ; 73: 55-63, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30470507

RESUMO

The ataxia telangiectasia-mutated and Rad3-related (ATR) serine/threonine kinase plays a central role in the repair of replication-associated DNA damage, the maintenance of S and G2/M-phase genomic stability, and the promotion of faithful mitotic chromosomal segregation. A number of stimuli activate ATR, including persistent single-stranded DNA at stalled replication folks, R loop formation, hypoxia, ultraviolet light, and oxidative stress, leading to ATR-mediated protein phosphorylation. Recently, hydrogen sulfide (H2S), an endogenous gasotransmitter, has been found to regulate multiple cellular processes through complex redox reactions under similar cell stress environments. Three enzymes synthesize H2S: cystathionine-ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Since H2S can under some conditions cause DNA damage, we hypothesized that ATR activity may regulate cellular H2S concentrations and H2S-syntheszing enzymes. Here we show that human colorectal cancer cells carrying biallelic knock-in hypomorphic ATR mutations have lower cellular H2S concentrations than do syngeneic ATR wild-type cells, and all three H2S-synthesizing enzymes show lower protein expression in the ATR hypomorphic mutant cells. Additionally, ATR serine 428 phosphorylation is altered by H2S donor and H2S synthesis enzyme inhibition, while the oxidative-stress induced phosphorylation of the ATR-regulated protein CHK1 on serine 345 is increased by H2S synthesis enzyme inhibition. Lastly, inhibition of H2S production potentiated oxidative stress-induced double-stranded DNA breaks in the ATR hypomorphic mutant compared to ATR wild-type cells. Our findings demonstrate that the ATR kinase regulates and is regulated by H2S.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sulfeto de Hidrogênio/metabolismo , Linhagem Celular Tumoral , Cistationina beta-Sintase/genética , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação da Expressão Gênica , Humanos , Mutação , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfurtransferases/genética , Sulfurtransferases/metabolismo
11.
Bioorg Chem ; 67: 139-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27388635

RESUMO

A series of novel 5-benzylidene-2,4-thiazolidinediones were designed as inhibitors of angiogenesis targeting VEGFR-2. In docking study, molecules showed similar way of binding with VEGFR-2 as that of the co-crystallized ligand. Compounds were then synthesized, purified and characterized by spectroscopic techniques. Compounds 3f and 3i were found to be most active in the series showing good inhibition of angiogenesis in both CAM and in zebrafish embryo assays. Compound 3i also exhibited IC50 of 0.5µM against VEGFR-2.


Assuntos
Compostos de Benzilideno/farmacologia , Desenho de Fármacos , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Tiazóis/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Compostos de Benzilideno/síntese química , Compostos de Benzilideno/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Neovascularização Patológica/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
12.
Biorheology ; 53(1): 33-47, 2016 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-26889656

RESUMO

BACKGROUND: Fluid flow plays an important role in vascular development. However, the detailed mechanisms, particularly the link between flow and modulation of gene expression during vascular development, remain unexplored. In chick embryo, the key events of vascular development from initiation of heart beat to establishment of effective blood flow occur between the stages HH10 and HH13. Therefore, we propose a novel in vivo model to study the flow experienced by developing endothelium. OBJECTIVE: Using this model, we aimed to capture the transcriptome dynamics of the pre- and post-flow conditions. METHODS: RNA was isolated from extra embryonic area vasculosa (EE-AV) pooled from three chick embryos between HH10-HH13 and RNA sequencing was performed. RESULTS: The whole transcriptome sequencing of chick identified up-regulation of some of the previously well-known mechanosensitive genes including NFR2, HAND1, CTGF and KDR. GO analyses of the up-regulated genes revealed enrichment of several biological processes including heart development, extracellular matrix organization, cell-matrix adhesion, cell migration, blood vessel development, patterning of blood vessels, collagen fibril organization. Genes encoding for gap junctions proteins which are involved in vascular remodeling and arterial-venous differentiation, and genes involved in cell-cell adhesion, and ECM interactions were significantly up-regulated. Validation of selected genes through semi quantitative PCR was performed. CONCLUSION: The study indicates that shear stress plays a major role in development. Through appropriate validation, this platform can serve as an in vivo model to study conditions of disturbed flow in pathology as well as normal flow during development.


Assuntos
Circulação Sanguínea/genética , Vasos Sanguíneos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Frequência Cardíaca/genética , Coração/fisiologia , Neovascularização Fisiológica/genética , Estresse Mecânico , Animais , Embrião de Galinha , Galinhas , Coração/embriologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Am J Physiol Gastrointest Liver Physiol ; 310(7): G497-509, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26767982

RESUMO

The histidine nucleotide-binding protein, Hint2, is a mitochondrial phosphoramidase expressed in liver, brown fat, pancreas, and muscle. The livers of Hint2 knockout (Hint2(-/-)) mice accumulate triglycerides and show a pattern of mitochondrial protein lysine hyperacetylation. The extent and nature of the lysine acetylation changes and the response of Hint2(-/-) mice to nutritional challenges that elicit a modification of protein acetylation have not been investigated. To compare the adaptation of Hint2(-/-) and control (Hint2(+/+)) mice with episodes of fasting and high-fat diet (HFD), we subjected animals to either feeding ad libitum or fasting for 24 h, and to either a HFD or control diet for 8 wk. Triglyceride content was higher in Hint2(-/-) than in Hint2(+/+) livers, whereas plasma triglycerides were fourfold lower. Malonyl-CoA levels were increased twofold in Hint2(-/-) livers. After 24 h fasting, Hint2(-/-) displayed a decrease in body temperature, commensurate with a decrease in mass of brown fat and downregulation of uncoupling protein 1. HFD-treated Hint2(-/-) livers showed more steatosis, and plasma insulin and cholesterol were higher than in Hint(+/+) mice. Several proteins identified as substrates of sirtuin 3 and 5 and active in intermediary and ketone metabolism were hyperacetylated in liver and brown fat mitochondria after both HFD and fasting regimens. Glutamate dehydrogenase activity was downregulated in fed and fasted livers, and this was attributed to an increase in acetylation and ADP-ribosylation. The absence of Hint2 deregulates the posttranslational modification of several mitochondrial proteins, which impedes the adaptation to episodes of nutritional stress.


Assuntos
Jejum/metabolismo , Fígado Gorduroso/metabolismo , Deleção de Genes , Hidrolases/deficiência , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/deficiência , Acetilação , Adaptação Fisiológica , Adenosina Difosfato Ribose/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Regulação da Temperatura Corporal , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado Gorduroso/fisiopatologia , Predisposição Genética para Doença , Glutamato Desidrogenase/metabolismo , Hidrolases/genética , Insulina/sangue , Fígado/patologia , Fígado/fisiopatologia , Malonil Coenzima A/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/patologia , Proteínas Mitocondriais/genética , Estado Nutricional , Fenótipo , Processamento de Proteína Pós-Traducional , Triglicerídeos/sangue , Proteína Desacopladora 1/metabolismo
14.
Vitam Horm ; 99: 249-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279379

RESUMO

Bone structure and function is shaped by gravity. Prolonged exposure to microgravity leads to 1-2% bone loss per month in crew members compared to 1% bone loss per year in postmenopausal women. Exercise countermeasures developed to date are ineffective in combating bone loss in microgravity. The search is on for alternate therapies to prevent bone loss in space. Microgravity is an ideal stimulus to understand bone interactions at different levels of organizations. Spaceflight experiments are limited by high costs and lack of opportunity. Ground-based microgravity analogs have proven to simulate biological responses in space. Mice experiments have given important signaling clues in microgravity-associated bone loss, but are restricted by numbers and human application. Cell-based systems provide initial clues to signaling changes; however, the information is simplistic and limited to the cell type. There is a need to integrate information at different levels and provide a complete picture which will help develop a unique strategy to prevent bone weakening. Limited exposure to simulated microgravity using random positioning machine induces proliferation and differentiation of bipotential murine oval liver stem cells. Bone morphogenetic proteins (BMPs) are the prototypal osteogenic signaling molecule with multitude of bone protective functions. In this chapter, we discuss the basic BMP structure, its significance in bone repair, and stem cell differentiation in microgravity. Based on the current information, we propose a model for BMP signaling in space. Development of new technologies may help osteoporosis patients, bedridden people, spinal injuries, or paralytic patients.


Assuntos
Proteínas Morfogenéticas Ósseas/química , Proteínas Morfogenéticas Ósseas/metabolismo , Osso e Ossos/metabolismo , Transdução de Sinais/fisiologia , Ausência de Peso , Animais , Densidade Óssea/fisiologia , Diferenciação Celular/fisiologia , Humanos , Camundongos , Células-Tronco/citologia , Células-Tronco/metabolismo
15.
Nanoscale ; 7(21): 9760-70, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25963768

RESUMO

Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [Eu(III)(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role.


Assuntos
Nanotubos/química , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Galinhas , GMP Cíclico/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio , NG-Nitroarginina Metil Éster/farmacologia , Nanotubos/toxicidade , Nanotubos/ultraestrutura , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
Cell Biol Int ; 37(5): 495-506, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23404577

RESUMO

Cadmium targets the vascular endothelium causing endothelial dysfunction and leakiness of endothelial barrier. Nitric oxide plays a major role in mediating endothelial functions including angiogenesis, migration and permeability. The present study investigates the nitric oxide effects on cadmium induced endothelial leakiness. Results of ex vivo and in vitro permeability assays showed that even a sub-lethal dose of cadmium chloride (1 µM) was sufficient to induce leakiness of endothelial cells. Cadmium drastically altered the actin polymerisation pattern and membrane tension of these cells compared to controls. Addition of nitric oxide donor Spermine NONOate (SP) significantly blunted cadmium-mediated effects and recover endothelial cells integrity. Cadmium-induced cytoskeletal rearrangements and membrane leakiness are associated with the low nitric oxide availability and high reactive oxygen species generation. In brief, we show the protective role of nitric oxide against cadmium-mediated endothelial leakiness.


Assuntos
Cádmio/toxicidade , Permeabilidade da Membrana Celular/efeitos dos fármacos , Espermina/análogos & derivados , Actinas/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Endotélio Vascular/patologia , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermina/farmacologia
17.
Bioorg Med Chem Lett ; 23(1): 287-90, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23182087

RESUMO

Benzothiazole and benzimidazole containing phthalimide derivatives (NK037, NK041, NK042, NK0139A and NK0148) have been synthesized and their anti-angiogenic activity was evaluated using ex vivo egg yolk angiogenesis model. A comparative study with pure thalidomide (NKTA) has also been performed to describe the efficacy of these derivatives in blocking angiogenesis. NK037, NK041 and NK042 were equally potent in blocking egg yolk angiogenesis and the anti-angiogenesis effect was higher than NKTA suggesting the efficacy of these three derivatives in blocking angiogenesis when compare to control. Other two derivatives NK0139A and NK0148 showed effect less than NKTA and stronger than control in ex vivo angiogenesis.


Assuntos
Inibidores da Angiogênese/síntese química , Benzimidazóis/química , Benzotiazóis/química , Ftalimidas/química , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Embrião de Galinha , Gema de Ovo/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Ftalimidas/síntese química , Ftalimidas/farmacologia
18.
J Food Sci ; 77(12): H273-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23240972

RESUMO

Recent evidence has demonstrated that nitrites play an important role in the cardiovascular system. Fennel (Foneiculum vulgare) seeds are often used as mouth fresheners after a meal in both the Indian sub-continent and around the world. The present study aims to quantify the nitrite and nitrates in fennel seeds as well as elucidating the effect of fennel derived-nitrites on vascular functions. Results from our study show that fennel seeds contain significantly higher amount of nitrites when compared to other commonly used post-meal seeds. Furthermore our study confirmed the functional effects of fennel derived-nitrites using in vitro and ex vivo models that describe the promotion of angiogenesis, cell migration, and vasorelaxation. We also showed that chewing fennel seeds enhanced nitrite content of saliva. Thus our study indicates the potential role of fennel derived-nitrites on the vascular system.


Assuntos
Foeniculum/química , Nitritos/farmacologia , Extratos Vegetais/farmacologia , Sementes/química , Vasodilatação/efeitos dos fármacos , Indutores da Angiogênese/farmacologia , Linhagem Celular , Citoproteção/efeitos dos fármacos , Humanos , Nitratos/análise , Especiarias/análise
19.
Sci Rep ; 2: 679, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22997553

RESUMO

Thalidomide, a sedative drug given to pregnant women, unfortunately caused limb deformities in thousands of babies. Recently the drug was revived because of its therapeutic potential; however the search is still ongoing for an antidote against thalidomide induced limb deformities. In the current study we found that nitric oxide (NO) rescues thalidomide affected chick (Gallus gallus) and zebrafish (Danio rerio) embryos. This study confirms that NO reduced the number of thalidomide mediated limb deformities by 94% and 80% in chick and zebrafish embryos respectively. NO prevents limb deformities by promoting angiogenesis, reducing oxidative stress and inactivating caspase-3 dependent apoptosis. We conclude that NO secures angiogenesis in the thalidomide treated embryos to protect them from deformities.


Assuntos
Indutores da Angiogênese/farmacologia , Anormalidades Musculoesqueléticas/induzido quimicamente , Doadores de Óxido Nítrico/farmacologia , Espermina/análogos & derivados , Teratogênicos/toxicidade , Talidomida/toxicidade , Indutores da Angiogênese/uso terapêutico , Animais , Aorta/efeitos dos fármacos , Aorta/patologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Catalase/fisiologia , Embrião de Galinha , Avaliação Pré-Clínica de Medicamentos , Desenvolvimento Embrionário/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Feminino , Técnicas In Vitro , Masculino , Anormalidades Musculoesqueléticas/prevenção & controle , Neovascularização Fisiológica/efeitos dos fármacos , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico Sintase Tipo III/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Espermina/farmacologia , Espermina/uso terapêutico , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA