Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; : 133132, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38945725

RESUMO

With the increased occurrence of bacteria resistance to conventional antibiotics, the development of novel antimicrobials is urgently needed. Traditional biomaterials used for delivering these agents often struggle to achieve sustained release while maintaining non-cytotoxic properties. In this study, we present an innovative approach using bacterial polyhydroxyalkanoates (PHA) as a carrier for antimicrobial delivery, specifically designed for wound healing applications. Octenidine dihydrochloride (OCT), a widely used antimicrobial agent, served as our model drug. To achieve the desired balance of OCT release and low cytotoxicity, we introduced a novel bio-derived additive, 3-hydroxy-pentadecanoic acid (3OHC15), extracted from bacteria. This additive significantly improved the hydrophilicity of PHA films, resulting in enhanced and sustained release of OCT. Importantly, the additive did not adversely affect the material's tensile strength or thermal properties. The increased OCT release led to improved antibacterial activity against both Gram-negative and -positive strains. Most notably, the incorporation of 3OHC15 in PHA mitigated the cytotoxic effects of the released drug on human fibroblasts, ensuring biocompatibility. This work represents a novel strategy in the design of biomaterials for the delivery of bioactive compounds, achieving a critical balance between efficacy and cytocompatibility, and marks a significant advancement in the field of antimicrobial delivery systems.

2.
Curr Microbiol ; 77(12): 4085-4094, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33098439

RESUMO

The novel Enterobacter strains TS1L and TS3, isolated from textile wastewater, showed a good ability to decolourise Basic Red 9 (BR9). The effects of various physicochemical parameters on decolourisation efficiency were evaluated using both single and mixed culture of Enterobacter sp. The optimal conditions for the decolourising activity of strains TS1L, TS3 and a mixed culture were as follows: textile wastewater as sole substrate without glucose addition, pH 7.0, 150 rpm, 35 °C and 12 h of incubation. The highest decolourisation rate was observed at 81.15% for the single culture of strain TS1L. Moreover, TS1L not only reduced BR9 in wastewater, but also improved the quality of the water under optimal conditions. The treated wastewater met the criteria of the Water Quality Standard (Thailand). Based on gas chromatography-mass spectrometry, TS1L completely degraded BR9 and converted it into organic compounds. To our knowledge, this is the first report of Enterobacter with the ability to decolourise BR9 dye.


Assuntos
Corantes , Águas Residuárias , Biodegradação Ambiental , Enterobacter , Resíduos Industriais/análise , Têxteis
3.
Curr Microbiol ; 77(6): 897-909, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31960091

RESUMO

Screening of high-efficient polycyclic aromatic hydrocarbon (PAH)-degrading bacteria is important due to environmental contamination by PAHs. In this study, sediment contaminated with phenanthrene (Phe), pyrene (Pyr), and fluoranthene (Fluo) was used as a source of bacteria. The ability of these isolated bacteria to convert PAHs into valuable products was determined. Based on a primary screening, 20 bacterial isolates were obtained; however, only three strains showed a good PAH-degrading ability, and were identified as Pseudomonas aeruginosa, Pseudomonas sp., and Ralstonia sp. PAH-degrading genes were detected in all isolates. Notably, all selected strains could degrade PAHs using the ortho or meta cleavage pathways due to the presence of catechol dioxygenase genes. The ability of isolated strains to convert PAHs into polyhydroxyalkanoate (PHA) was also evaluated in both single and mixed cultures. Single cultures of P. aeruginosa PAH-P02 showed 100% degradation of PAHs, with the highest biomass (1.27 ± 0.02 g l-1) and PHA content (38.20 ± 1.92% dry cell weight). However, degradative ability and PHA production were decreased when mixtures of PAHs were used. This study showed that P. aeruginosa, Pseudomonas sp., and Ralstonia sp. were able to degrade PAHs and convert them into medium-chain-length (mcl)-PHA. A high content of 3-hydroxydecanoate (3HD, C10) was observed in this study. The formation of mcl-PHA with high 3HD content from Pyr and Fluo, and the assessment of mixed cultures converting PAHs to mcl-PHA, were novel contributions.


Assuntos
Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Técnicas de Cocultura , Ácidos Decanoicos/metabolismo , Fermentação , Fluorenos/análise , Fluorenos/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Fenantrenos/análise , Fenantrenos/metabolismo , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos/análise , Pirenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA