Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5024, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424094

RESUMO

Legumes have the ability to establish a nitrogen-fixing symbiosis with soil rhizobia that they house in specific organs, the nodules. In most rhizobium-legume interactions, nodulation occurs on the root. However, certain tropical legumes growing in wetlands possess a unique trait: the capacity to form rhizobia-harbouring nodules on the stem. Despite the originality of the stem nodulation process, its occurrence and diversity in waterlogging-tolerant legumes remains underexplored, impeding a comprehensive analysis of its genetics and biology. Here, we aimed at filling this gap by surveying stem nodulation in legume species-rich wetlands of Madagascar. Stem nodulation was readily observed in eight hydrophytic species of the legume genera, Aeschynomene and Sesbania, for which significant variations in stem nodule density and morphology was documented. Among these species, A. evenia, which is used as genetic model to study the rhizobial symbiosis, was found to be frequently stem-nodulated. Two other Aeschynomene species, A. cristata and A. uniflora, were evidenced to display a profuse stem-nodulation as occurs in S. rostrata. These findings extend our knowledge on legumes species that are endowed with stem nodulation and further indicate that A. evenia, A. cristata, A. uniflora and S. rostrata are of special interest for the study of stem nodulation. As such, these legume species represent opportunities to investigate different modalities of the nitrogen-fixing symbiosis and this knowledge could provide cues for the engineering of nitrogen-fixation in non-legume crops.


Assuntos
Fabaceae , Rhizobium , Sesbania , Fabaceae/genética , Madagáscar , Áreas Alagadas , Fixação de Nitrogênio , Verduras , Nitrogênio , Simbiose/genética , Nodulação/genética , Nódulos Radiculares de Plantas
2.
Plants (Basel) ; 12(10)2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37653884

RESUMO

Seven essential oil samples of two endemic species of Malagasy sage, Salvia sessilifolia Baker and Salvia leucodermis Baker, were investigated via GC(RI), GC-MS and 13C NMR spectrometry. In total, 81compounds were identified accounting for 93.5% to 98.7% of the total composition. The main constituents for the both species were (E)-ß-caryophyllene (29.2% to 60.1%), myrcene (1.2% to 21.7%), α-humulene (5.2% to 19.7%), (E)-nerolidol (0.8% to 15.5%) and caryophyllene oxide (1.4% to 10.8%). Ethnobotanical survey of 46 informants revealed that decoctions of leafy twigs and chewed leaves were usually used. Due to the repeated fires, over-harvesting and grazing, the populations of S. sessilifolia and S. leucodermis are drastically fragmented. These risk factors led to threats to the habitats of the target species. Salvia sessilifolia Baker and Salvia leucodermis Baker are proposed to be classified as endangered species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA