Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biology (Basel) ; 13(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38392345

RESUMO

Glycogen and poly-3-hydroxybutyrate (PHB) are excellent biopolymer products from cyanobacteria. In this study, we demonstrate that nitrogen metabolism is positively influenced by the exogenous application of trehalose (Tre) in Arthrospira platensis under nitrogen-deprived (-N) conditions. Cells were cultivated photoautotrophically for 5 days under -N conditions, with or without the addition of exogenous Tre. The results revealed that biomass and chlorophyll-a content of A. platensis experienced enhancement with the addition of 0.003 M and 0.03 M Tre in the -N medium after one day, indicating relief from growth inhibition caused by nitrogen deprivation. The highest glycogen content (54.09 ± 1.6% (w/w) DW) was observed in cells grown for 2 days under the -N + 0.003 M Tre condition (p < 0.05), while the highest PHB content (15.2 ± 0.2% (w/w) DW) was observed in cells grown for 3 days under the -N + 0.03 M Tre condition (p < 0.05). The RT-PCR analysis showed a significant increase in glgA and phaC transcript levels, representing approximately 1.2- and 1.3-fold increases, respectively, in A. platensis grown under -N + 0.003 M Tre and -N + 0.03 M Tre conditions. This was accompanied by the induction of enzyme activities, including glycogen synthase and PHA synthase with maximal values of 89.15 and 0.68 µmol min-1 mg-1 protein, respectively. The chemical structure identification of glycogen and PHB from A. platensis was confirmed by FTIR and NMR analysis. This research represents the first study examining the performance of trehalose in promoting glycogen and PHB production in cyanobacteria under nitrogen-deprived conditions.

3.
Antibiotics (Basel) ; 12(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37508247

RESUMO

The amount of antibiotics and personal care products entering local sewage systems and ultimately natural waters is increasing and raising concerns about long-term human health effects. We developed an adsorptive photocatalyst, Cu0.5Mn0.5Fe2O4 nanoparticles, utilizing co-precipitation and calcination with melamine, and quantified its efficacy in removing paraben and oxytetracycline (OTC). During melamine calcination, Cu0.5Mn0.5Fe2O4 recrystallized, improving material crystallinity and purity for the adsorptive-photocatalytic reaction. Kinetic experiments showed that all four parabens and OTC were removed within 120 and 45 min. We found that contaminant adsorption and reaction with active radicals occurred almost simultaneously with the photocatalyst. OTC adsorption could be adequately described by the Brouers-Sotolongo kinetic and Freundlich isotherm models. OTC photocatalytic degradation started with a series of reactions at different carbon locations (i.e., decarboxamidation, deamination, dehydroxylation, demethylation, and tautomerization). Further toxicity testing showed that Zea mays L. and Vigna radiata L. shoot indexes were less affected by treated water than root indexes. The Zea mays L. endodermis thickness and area decreased considerably after exposure to the 25% (v/v)-treated water. Overall, Cu0.5Mn0.5Fe2O4 nanoparticles exhibit a remarkable adsorptive-photocatalytic performance for the degradation of tested antibiotics and personal care products.

4.
Biology (Basel) ; 12(5)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37237563

RESUMO

Polyhydroxybutyrate (PHB) is a biocompatible and biodegradable polymer that has the potential to replace fossil-derived polymers. The enzymes involved in the biosynthesis of PHB are ß-ketothiolase (PhaA), acetoacetyl-CoA reductase (PhaB), and PHA synthase (PhaC). PhaC in Arthrospira platensis is the key enzyme for PHB production. In this study, the recombinant E. cloni®10G cells harboring A. platensis phaC (rPhaCAp) was constructed. The overexpressed and purified rPhaCAp with a predicted molecular mass of 69 kDa exhibited Vmax, Km, and kcat values of 24.5 ± 2 µmol/min/mg, 31.3 ± 2 µM and 412.7 ± 2 1/s, respectively. The catalytically active rPhaCAp was a homodimer. The three-dimensional structural model for the asymmetric PhaCAp homodimer was constructed based on Chromobacterium sp. USM2 PhaC (PhaCCs). The obtained model of PhaCAp revealed that the overall fold of one monomer was in the closed, catalytically inactive conformation whereas the other monomer was in the catalytically active, open conformation. In the active conformation, the catalytic triad residues (Cys151-Asp310-His339) were involved in the binding of substrate 3HB-CoA and the CAP domain of PhaCAp involved in the dimerization.

5.
Vet Med Int ; 2023: 2582774, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009523

RESUMO

Canine oral cancers have a poor prognosis and are related to chronic inflammation. This may pose a risk of secondary bacterial infection. This study aimed to compare the bacteria isolated from oral swab samples, values of C-reactive proteins (CRPs), and clinical blood profiles of dogs with and without oral mass. A total of 36 dogs were divided in three groups: no oral mass (n = 21), oral mass (n = 8), and metastasis groups (n = 7). Significantly, both the clinical groups (the oral mass group and metastasis group) showed anemia, a decrease in the albumin-to-globulin ratio (AGR), and an increase in the neutrophil-to-lymphocyte ratio (NLR), globulin-to-albumin ratio (GAR), CRP, and CRP-to-albumin ratio (CAR) compared to the normal group. CAR showed an increasing trend in the oral mass and metastasis groups (10 times and 100 times, respectively) compared to the no oral mass group (P < 0.001). Neisseria spp. (20.78%) was the main isolated bacteria in all groups. The main genera in the no oral mass group were Neisseria spp. (28.26%), Pasteurella spp. (19.57%), and Staphylococcus spp. (19.57%). Neisseria spp., Staphylococcus spp., Klebsiella spp., and Escherichia spp. were found equally (12.5%) in the oral mass group. Escherichia spp. (26.67%), Pseudomonas spp. (13.33%), and Staphylococcus spp. (13.33%) were the main genera in the metastasis group. Interestingly, Neisseria spp. decreased in the clinical groups (Fisher's exact = 6.39, P=0.048), and Escherichia spp. increased in the metastasis group (Fisher's exact = 14.00, P=0.002). The difference of oral bacteria in clinical dogs compared to healthy dogs may be related to microbiome alterations, and both the clinical groups showed the increment of inflammatory biomarkers. This suggested that further studies should be conducted on the correlation between the specific bacteria, CRP, blood clinical parameters, and type of canine oral mass.

6.
Adv Biochem Eng Biotechnol ; 183: 253-279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009974

RESUMO

Hydrogen gas (H2) is one of the potential future sustainable and clean energy carriers that may substitute the use of fossil resources including fuels since it has a high energy content (heating value of 141.65 MJ/kg) when compared to traditional hydrocarbon fuels [1]. Water is a primary product of combustion being a most significant advantage of H2 being environmentally friendly with the capacity to reduce global greenhouse gas emissions. H2 is used in various applications. It generates electricity in fuel cells, including applications in transportation, and can be applied as fuel in rocket engines [2]. Moreover, H2 is an important gas and raw material in many industrial applications. However, the high cost of the H2 production processes requiring the use of other energy sources is a significant disadvantage. At present, H2 can be prepared in many conventional ways, such as steam reforming, electrolysis, and biohydrogen production processes. Steam reforming uses high-temperature steam to produce hydrogen gas from fossil resources including natural gas. Electrolysis is an electrolytic process to decompose water molecules into O2 and H2. However, both these two methods are energy-intensive and producing hydrogen from natural gas, which is mostly methane (CH4) and in steam reforming generates CO2 and pollutants as by-products. On the other hand, biological hydrogen production is more environmentally sustainable and less energy intensive than thermochemical and electrochemical processes [3], but most concepts are not yet developed to production scale.


Assuntos
Cianobactérias , Vapor , Gás Natural , Água , Hidrogênio
7.
Vet World ; 15(12): 2877-2889, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36718324

RESUMO

Background and Aim: Ehrlichia canis and Anaplasma platys are tick-borne, Gram-negative bacteria that cause canine monocytic ehrlichiosis and canine cyclic thrombocytopenia, respectively. These diseases are of great importance and are distributed globally. This study aimed to create new primers for the identification of E. canis and A. platys in naturally infected dogs using polymerase chain reaction (PCR), DNA sequencing, and phylogenetic analysis using the 16S rDNA and gltA genes. Materials and Methods: In total, 120 blood samples were collected from dogs in three different locations (Saraburi, Buriram, and Nakhon Ratchasima provinces) in Central and Northeast Thailand. The molecular prevalence of E. canis and A. platys was assessed using PCR targeting the 16S rDNA and gltA genes. All positive PCR amplicons were sequenced, and phylogenetic trees were constructed based on the maximum likelihood method. Results: Ehrlichia canis had an overall molecular prevalence of 15.8% based on the 16S rDNA gene, compared to 8.3% based on the gltA gene. In addition, the overall molecular prevalence of A. platys using the 16S rDNA gene was 10.8%, while the prevalence rate was 5.8% using the gltA gene. Coinfection was 0.8% in Saraburi province. The partial sequences of the 16S rDNA and gltA genes of E. canis and A. platys in dogs in Central and Northeast Thailand showed 96.75%-100% identity to reference sequences in GenBank. Phylogenetic analysis of the 16S rDNA and gltA genes revealed that E. canis and A. platys sequences were clearly grouped into their own clades. Conclusion: This study demonstrated the molecular prevalence of E. canis and A. platys in Central and Northeast Thailand. The 16S rDNA and gltA genes were useful for the diagnosis of E. canis and A. platys. Based on the phylogenetic analysis, the partial sequences of the 16S rDNA and gltA genes in E. canis and A. platys were related to prior Thai strains and those from other countries.

8.
Vet World ; 13(5): 967-974, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32636595

RESUMO

AIM: This study aimed to examine the intestinal histopathological lesions and mucous cell responses in the entire intestines of Nile tilapia administered with Lactobacillus rhamnosus GG (LGG)-mixed feed, after Aeromonas hydrophila challenge. MATERIALS AND METHODS: Intestinal samples from fish fed with control normal diet or LGG-mixed feed (1010 colony-forming unit [CFU]/g feed) with or without A. hydrophila in phosphate-buffered saline challenge (7.46 × 108 CFU/mL/fish) were collected and processed for histopathological study. The mucous cell responses were evaluated using histochemistry, using Alcian blue (AB) at pH 2.5, AB at pH 1.0, and periodic acid-Schiff-AB at pH 2.5. The quantification of the intestinal mucous cell size and the staining character of each mucin type from the entire intestine were recorded and counted. RESULTS: Histopathological study showed remarkable lesions only in the proximal intestine in fish infected with A. hydrophila, while LGG-fed fish had less intestinal damage, perhaps resulting from heterophil infiltration. Furthermore, a significant (p<0.01) increase in mixed mucous cell numbers was observed mainly in the proximal intestine of all challenged fish, compared with normal diet-fed fish without challenge, and also in LGG-fed fish with A. hydrophila challenge compared with LGG-fed fish without challenge. CONCLUSION: Dietary LGG-fed Nile tilapia showed improvements in host innate immunity. In addition, LGG was effective in decreasing intestinal lesions from A. hydrophila-induced intestinal damage. Moreover, increasing numbers of mixed mucous cells in the proximal intestine might be indicative of certain pathological conditions in Nile tilapia after A. hydrophila infection.

9.
Orig Life Evol Biosph ; 46(1): 119-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26294358

RESUMO

Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.


Assuntos
Anabaena/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Spirulina/crescimento & desenvolvimento , Synechocystis/crescimento & desenvolvimento , Anabaena/metabolismo , Exobiologia , Hidrogênio/metabolismo , Marte , Pressão Parcial , Spirulina/metabolismo , Synechocystis/metabolismo
10.
Arch Microbiol ; 192(10): 791-801, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20661547

RESUMO

The potD gene encodes the bacterial substrate-binding subunit of the polyamine transport system. The uptake system, which belongs to the ABC transporters, has been characterized in Escherichia coli, but it has not been previously studied in cyanobacteria. Although the overall sequence identity between Synechocystis sp. strain PCC 6803 (hereafter Synechocystis) PotD and Escherichia coli PotD is 24%, the ligand-binding site in the constructed homology model of Synechocystis PotD is well conserved. The conservation of the five polyamine-binding residues (Asp206, Glu209, Trp267, Trp293, and Asp295 in Synechocystis PotD) between these two species indicated polyamine-binding capacity for Synechocystis PotD. The Synechocystis potD gene is functional and its expression is under environmental regulation at transcriptional as well as post-transcriptional levels. Furthermore, an in vitro binding assay with the purified recombinant PotD protein demonstrated that the Synechocystis PotD protein is able to bind polyamines and favors spermidine over putrescine. Finally, we confirmed that Synechocystis PotD plays a physiological role in the uptake of polyamines in vivo using a constructed Synechocystis potD-disruption mutant.


Assuntos
Sítios de Ligação/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Espermidina/metabolismo , Synechocystis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Técnicas de Inativação de Genes , Modelos Moleculares , Estrutura Secundária de Proteína , Putrescina/metabolismo , Synechocystis/metabolismo
11.
BMC Plant Biol ; 10: 43, 2010 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-20205940

RESUMO

BACKGROUND: DnaJ proteins participate in many metabolic pathways through dynamic interactions with various components of these processes. The role of three small chloroplast-targeted DnaJ proteins, AtJ8 (At1 g80920), AtJ11 (At4 g36040) and AtJ20 (At4 g13830), was investigated here using knock-out mutants of Arabidopsis thaliana. Photochemical efficiency, capacity of CO2 assimilation, stabilization of Photosystem (PS) II dimers and supercomplexes under high light illumination, energy distribution between PSI and PSII and phosphorylation of PSII-LHCII proteins, global gene expression profiles and oxidative stress responses of these DnaJ mutants were analyzed. RESULTS: Knockout of one of these proteins caused a series of events including a decrease in photosynthetic efficiency, destabilization of PSII complexes and loss of control for balancing the redox reactions in chloroplasts. Data obtained with DNA microarray analysis demonstrated that the lack of one of these DnaJ proteins triggers a global stress response and therefore confers the plants greater tolerance to oxidative stress induced by high light or methyl viologen treatments. Expression of a set of genes encoding enzymes that detoxify reactive oxygen species (ROS) as well as a number of stress-related transcription factors behaved in the mutants at growth light similarly to that when wild-type (WT) plants were transferred to high light. Also a set of genes related to redox regulation were upregulated in the mutants. On the other hand, although the three DnaJ proteins reside in chloroplasts, the expression of most genes encoding thylakoid membrane proteins was not changed in the mutants. CONCLUSION: It is proposed that the tolerance of the DnaJ protein knockout plants to oxidative stress occurs at the expense of the flexibility of photosynthetic reactions. Despite the fact that the effects of the individual protein knockout on the response of plants to high light treatment are quite similar, it is conceivable that both specific- and cross-talk functions exist between the three small chloroplast-targeted DnaJ proteins, AtJ8, AtJ11 and AtJ20.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Chaperonas Moleculares/metabolismo , Estresse Oxidativo , Fotossíntese , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Clorofila/análise , Cloroplastos/metabolismo , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Chaperonas Moleculares/genética , Mutagênese Insercional , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
12.
J Microbiol Biotechnol ; 19(5): 447-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19494691

RESUMO

The transport of spermidine into a cyanobacterium, Synechocystis sp. PCC 6803, was characterized by measuring the uptake of 14C-spermidine. Spermidine transport was shown to be saturable with an apparent affinity constant (Km) value of 67 microM and a maximal velocity (Vmax) value of 0.45 nmol/min/mg protein. Spermidine uptake was pHdependent with the pH optimum being 8.0. The competition experiment showed strong inhibition of spermidine uptake by putrescine and spermine, whereas amino acids were hardly inhibitory. The inhibition kinetics of spermidine transport by putrescine and spermine was found to be noncompetitive with Ki values of 292 and 432 microM, respectively. The inhibition of spermidine transport by various metabolic inhibitors and ionophores suggests that spermidine uptake is energy-dependent. The diminution of cell growth was observed in cells grown at a high concentration of NaCl. Addition of a low concentration of spermidine at 0.5 mM relieved growth inhibition by salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased spermidine transport with about 30- 40% increase at 10 mosmol/kg upshift.


Assuntos
Espermidina/metabolismo , Synechocystis/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Concentração de Íons de Hidrogênio , Ionóforos/farmacologia , Potenciais da Membrana , Osmose , Putrescina/metabolismo , Tolerância ao Sal , Espermina/metabolismo
13.
Arch Microbiol ; 191(7): 561-70, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19430763

RESUMO

The futC gene encodes a subunit of an ATP-binding cassette (ABC)-type iron transporter in Synechocystis sp. strain PCC 6803. In the present study, we have focused on the environmental regulation of futC transcription in the model organism Synechocystis sp. strain PCC 6803 and, moreover, studied the transcriptional regulation of the other transporter subunits, futA1, futA2 and futB. The steady-state amounts of the futA1, futA2, futB and futC transcripts were regulated under several conditions studied including darkness, temperature, alternative nitrogen source, salt and osmotic stresses and iron deficiency. Transcription of all subunits of the FutABC-iron transporter seems to be under similar regulation, which, according to our results, may also apply to genes encoding subunits of other transporters in Synechocystis. The sequence alignment, including sequences from six different organisms, revealed the conserved nature of FutC. Based on the sequence alignment and the structural model of FutC, the monomer consists of a nucleotide-binding domain (NBD) and a regulatory domain. The NBD is well conserved indicating completely functional ATP binding.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Synechocystis/genética , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Modelos Moleculares , Dados de Sequência Molecular , Nitrogênio/metabolismo , Estrutura Terciária de Proteína , RNA Bacteriano/genética , Alinhamento de Sequência , Synechocystis/metabolismo , Transcrição Gênica
14.
FEMS Microbiol Lett ; 270(1): 139-45, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17302934

RESUMO

Aphanothece cells could take up Na(+) and this uptake was strongly inhibited by the protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells preloaded with Na(+) exhibited Na(+) extrusion ability upon energizing with glucose. Na(+) was also taken up by the plasma membranes supplied with ATP and the uptake was abolished by gramicidin D, monensin or Na(+)-ionophore. Orthovanadate and CCCP strongly inhibited Na(+) uptake, whereas N, N'-dicyclohexylcarbodiimide (DCCD) slightly inhibited the uptake. Plasma membranes could hydrolyse ATP in the presence of Na(+) but not with K(+), Ca(2+) and Li(+). The K(m) values for ATP and Na(+) were 1.66+/-0.12 and 25.0+/-1.8 mM, respectively, whereas the V(max) value was 0.66+/-0.05 mumol min(-1) mg(-1). Mg(2+) was required for ATPase activity whose optimal pH was 7.5. The ATPase was insensitive to N-ethylmaleimide, nitrate, thiocyanate, azide and ouabain, but was substantially inhibited by orthovanadate and DCCD. Amiloride, a Na(+)/H(+) antiporter inhibitor, and CCCP showed little or no effect. Gramicidin D and monensin stimulated ATPase activity. All these results suggest the existence of a P-type Na(+)-stimulated ATPase in Aphanothece halophytica. Plasma membranes from cells grown under salt stress condition showed higher ATPase activity than those from cells grown under nonstress condition.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/enzimologia , Cianobactérias/enzimologia , Sódio/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/farmacologia , Azidas/farmacologia , Cálcio/metabolismo , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cianobactérias/efeitos dos fármacos , Cianobactérias/metabolismo , Dicicloexilcarbodi-Imida/farmacologia , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Etilmaleimida/farmacologia , Gramicidina/farmacologia , Concentração de Íons de Hidrogênio , Lítio/metabolismo , Monensin/farmacologia , Nitratos/farmacologia , Ouabaína/farmacologia , Potássio/metabolismo , Cloreto de Sódio/farmacologia
15.
J Biochem Mol Biol ; 39(4): 394-9, 2006 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-16889682

RESUMO

The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.


Assuntos
Putrescina/metabolismo , Synechocystis/metabolismo , Transporte Biológico/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Cinética , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA