RESUMO
Spiders evolved a distinctive sperm transfer system, with the male copulatory organs located on the tarsus of the pedipalps. In entelegyne spiders, these organs are usually very complex and consist of various sclerites that not only allow the transfer of the sperm themselves but also provide a mechanical interlock between the male and female genitalia. This interlocking can also involve elements that are not part of the copulatory organ such as the retrolateral tibial apophysis (RTA)-a characteristic of the most diverse group of spiders (RTA clade). The RTA is frequently used for primary locking i.e., the first mechanical engagement between male and female genitalia. Despite its functional importance, some diverse spider lineages have lost the RTA, but evolved an apophysis on the femur instead. It can be hypothesized that this femoral apophysis is a functional surrogate of the RTA during primary locking or possibly serves another function, such as self-bracing, which involves mechanical interaction between male genital structures themselves to stabilize the inserted pedipalp. We tested these hypotheses using ghost spiders of the genus Josa (Anyphaenidae). Our micro-computed tomography data of cryofixed mating pairs show that the primary locking occurs through elements of the copulatory organ itself and that the femoral apophysis does not contact the female genitalia, but hooks to a projection of the copulatory bulb, representing a newly documented self-bracing mechanism for entelegyne spiders. Additionally, we show that the femoral self-bracing apophysis is rather uniform within the genus Josa. This is in contrast to the male genital structures that interact with the female, indicating that the male genital structures of Josa are subject to different selective regimes.
RESUMO
Geometric regularity of spider webs has been intensively studied in orb-weaving spiders, although it is not exclusive of orb weavers. Here, we document the geometrically regular, repetitive elements in the webs of the non-orb-weaving groups Leptonetidae and Telemidae for the first time. Similar to orb weavers, we found areas with regularly spaced parallel lines in the webs of Calileptoneta helferi, Sulcia sp., and cf. Pinelema sp. Furthermore, we provide a detailed account of the regular webs of Ochyrocera (Ochyroceratidae). The sections of the web with regularly disposed parallel lines are built as U-shaped modules reminiscent of orb webs. It has been suggested that the regularly spaced parallel lines in the webs of Ochyroceratidae and Psilodercidae may be produced in a single sweep of their posterior lateral spinnerets, which have regularly spaced aciniform gland spigots, perhaps involving expansion of the spinnerets. To test this hypothesis, we compared the spacing between parallel lines with the spacing between spigots, searched for expansible membranes in the spinnerets, and examined the junctions of regularly spaced lines. The distance between parallel lines was 10-20 times the distance between spigots, and we found no expansible membranes, and the intersection of parallel lines are cemented, which opposes the single sweep hypothesis. Furthermore, we found cues of viscid silk in the parallel lines of the psilodercid Althepus and broadened piriform gland spigots that may be responsible of its production. Finally, we evaluated the presence or absence of geometrically regular web elements across the spider tree of life. We found reports of regular webs in 31 spider families, including 20 families that are not orb weavers and hypothesize that the two basic aspects of regularity (parallel lines spaced at regular intervals, and radial lines spaced at regular angles) probably appeared many times in the evolution of spiders.
RESUMO
Understanding the drivers of morphological convergence requires investigation into its relationship with behavior and niche space, and such investigations in turn provide insights into evolutionary dynamics, functional morphology, and life history. Mygalomorph spiders (trapdoor spiders and their kin) have long been associated with high levels of morphological homoplasy, and many convergent features can be intuitively associated with different behavioral niches. Using genus-level phylogenies based on recent genomic studies and a newly assembled matrix of discrete behavioral and somatic morphological characters, we reconstruct the evolution of burrowing behavior in the Mygalomorphae, compare the influence of behavior and evolutionary history on somatic morphology, and test hypotheses of correlated evolution between specific morphological features and behavior. Our results reveal the simplicity of the mygalomorph adaptive landscape, with opportunistic, web-building taxa at one end, and burrowing/nesting taxa with structurally modified burrow entrances (e.g., a trapdoor) at the other. Shifts in behavioral niche, in both directions, are common across the evolutionary history of the Mygalomorphae, and several major clades include taxa inhabiting both behavioral extremes. Somatic morphology is heavily influenced by behavior, with taxa inhabiting the same behavioral niche often more similar morphologically than more closely related but behaviorally divergent taxa, and we were able to identify a suite of 11 somatic features that show significant correlation with particular behaviors. We discuss these findings in light of the function of particular morphological features, niche dynamics within the Mygalomorphae, and constraints on the mygalomorph adaptive landscape relative to other spiders.
RESUMO
Filistatids, the crevice weavers, are an ancient family of cribellate spiders without extant close relatives. As one of the first lineages of araneomorph spiders, they present a complicated mixture of primitive and derived characters that make them a key taxon to elucidate the phylogeny of spiders, as well as the evolution of phenotypic characters in this group. Their moderate diversity (187 species in 19 genera) is distributed mainly in arid and semi-arid subtropical zones of all continents, except Antarctica. The objective of this paper is to generate a comprehensive phylogenetic hypothesis for this family to advance the understanding of its morphological evolution and biogeography, as well as lay the basis for a natural classification scheme. By studying the morphology using optical and electronic microscopy techniques, we produced a matrix of 302 morphological characters coded for a sample of 103 species of filistatids chosen to represent the phylogenetic diversity of the family. In addition, we included sequences of four molecular markers (COI, 16S, H3 and 28S; 3787 aligned positions) of 70 filistatid species. The analysis of the data (morphological, molecular, and combined) consistently indicates the separation of the Filistatidae into two subfamilies, Prithinae and Filistatinae, in addition to supporting several groups of genera: Filistata, Zaitunia and an undescribed genus from Madagascar; Sahastata and Kukulcania; all Prithinae except Filistatinella and Microfilistata; Antilloides and Filistatoides; a large Old World group including Pritha, Tricalamus, Afrofilistata, Labahitha, Yardiella, Wandella and putative new genera; and a South American group formed by Lihuelistata, Pikelinia and Misionella. Pholcoides is transferred to Filistatinae and Microfilistata is transferred to Prithinae, and each represents the sister group to the remaining genera of its own subfamily. Most genera are valid, although Pikelinia is paraphyletic with respect to Misionella, so we consider the two genera as synonyms and propose a few new generic combinations. Considering the new phylogenetic hypothesis, we discuss the evolution of some morphological character systems and the biogeography of the family. The ages of divergence between clades were estimated using a total-evidence tip-dating approach by including fossils of Filistatidae and early spider clades; this approach resulted in younger age estimates than those obtained with traditional node-dating. Filistatidae is an ancient family that started diversifying in the Mesozoic and most genera date to the Cretaceous. Clades displaying transcontinental distributions were most likely affected by continental drift, but at least one clade shows unequivocal signs of transoceanic long-distance dispersal.
Assuntos
Aranhas , Animais , Regiões Antárticas , Fósseis , Madagáscar , Filogenia , Aranhas/genéticaRESUMO
A prominent question in animal research is how the evolution of morphology and ecology interacts in the generation of phenotypic diversity. Spiders are some of the most abundant arthropod predators in terrestrial ecosystems and exhibit a diversity of foraging styles. It remains unclear how spider body size and proportions relate to foraging style, and if the use of webs as prey capture devices correlates with changes in body characteristics. Here, we present the most extensive data set to date of morphometric and ecological traits in spiders. We used this data set to estimate the change in spider body sizes and shapes over deep time and to test if and how spider phenotypes are correlated with their behavioral ecology. We found that phylogenetic variation of most traits best fitted an Ornstein-Uhlenbeck model, which is a model of stabilizing selection. A prominent exception was body length, whose evolutionary dynamics were best explained with a Brownian Motion (free trait diffusion) model. This was most expressed in the araneoid clade (ecribellate orb-weaving spiders and allies) that showed bimodal trends toward either miniaturization or gigantism. Only few traits differed significantly between ecological guilds, most prominently leg length and thickness, and although a multivariate framework found general differences in traits among ecological guilds, it was not possible to unequivocally associate a set of morphometric traits with the relative ecological mode. Long, thin legs have often evolved with aerial webs and a hanging (suspended) locomotion style, but this trend is not general. Eye size and fang length did not differ between ecological guilds, rejecting the hypothesis that webs reduce the need for visual cue recognition and prey immobilization. For the inference of the ecology of species with unknown behaviors, we propose not to use morphometric traits, but rather consult (micro-)morphological characters, such as the presence of certain podal structures. These results suggest that, in contrast to insects, the evolution of body proportions in spiders is unusually stabilized and ecological adaptations are dominantly realized by behavioral traits and extended phenotypes in this group of predators. This work demonstrates the power of combining recent advances in phylogenomics with trait-based approaches to better understand global functional diversity patterns through space and time. [Animal architecture; Arachnida; Araneae; extended phenotype; functional traits; macroevolution; stabilizing selection.].
Assuntos
Aracnídeos , Aranhas , Animais , Aracnídeos/genética , Evolução Biológica , Ecossistema , FilogeniaRESUMO
The genus Carteronius Simon, 1897 is transferred from Clubionidae to Corinnidae and recognized as the senior synonym of Mandaneta Strand, 1932, being the oldest available name for the pre-occupied Mandane Karsch, 1880. Upon comparing the respective type specimens, the type species of Carteronius and the type species of Mandaneta were found to represent the same species. Whence the type species Carteronius helluo Simon, 1896, is considered a junior synonym of the type species Mandaneta sudana (Karsch, 1880). Three other species of Carteronius are transferred to Donuea Strand, 1932 (Corinnidae): D. fuscus (Simon, 1896) comb. nov. from Mauritius, D. vittiger (Simon, 1896) comb. nov. and D. argenticomus (Keyserling, 1877) comb. nov., both from Madagascar. The type species, Carteronius sudanus comb. nov., from Côte d'Ivoire, Democratic Republic of the Congo, Ghana, Guinea, Sierra Leone, and C. gentilis (Simon, 1909) comb. nov., from Equatorial Guinea and Cameroon (the latter transferred from Procopius Thorell, 1899) are redescribed, and the female of C. gentilis is described for the first time. Six new species of Carteronius are described: C. ashanti Bonaldo & Silva-Junior sp. nov. from Ghana, C. myene Bonaldo & Labarque sp. nov., and C. simoni Bonaldo & Shimano sp. nov. from Gabon, C. lumumba Bonaldo & Ramírez sp. nov. from Cameroon, Gabon and the Democratic Republic of the Congo, and C. arboreus Bonaldo & Haddad sp. nov. and C. teke Bonaldo & Bosselaers sp. nov. from the Democratic Republic of the Congo. A key and distribution maps to all eight species in the genus are presented. The related Bunyoronius Bonaldo, Ramírez & Haddad gen. nov. is proposed to include B. femoralis Bonaldo, Ramírez & Haddad sp. nov. from the Central African Republic, Uganda, and Rwanda.
Assuntos
Aranhas , Feminino , Animais , Distribuição AnimalRESUMO
The importance of morphology in the phylogenomic era has recently gained attention, but relatively few studies have combined both types of information when inferring phylogenetic relationships. Sanger sequencing legacy data can also be important for understanding evolutionary relationships. The possibility of combining genomic, morphological and Sanger data in one analysis seems compelling, permitting a more complete sampling and yielding a comprehensive view of the evolution of a group. Here we used these three data types to elucidate the systematics and evolution of the Dionycha, a highly diverse group of spiders relatively underrepresented in phylogenetic studies. The datasets were analyzed separately and combined under different inference methods, including a novel approach for analyzing morphological matrices with commonly used evolutionary models. We tested alternative hypotheses of relationships and performed simulations to investigate the accuracy of our findings. We provide a comprehensive and thorough phylogenetic hypothesis for Dionycha that can serve as a robust framework to test hypotheses about the evolution of key characters. We also show that morphological data might have a phylogenetic impact, even when massively outweighed by molecular data. Our approach to analyze morphological data may serve as an alternative to the proposed practice of arbitrarily partitioning, weighting, and choosing between parsimony and stochastic models. As a result of our findings, we propose Trachycosmidae new rank for a group of Australian genera formerly included in Trochanteriidae and Gallieniellidae, and consider Ammoxenidae as a junior synonym of Gnaphosidae. We restore the family rank for Prodidomidae, but transfer the subfamily Molycriinae to Gnaphosidae. Drassinella is transferred to Liocranidae, Donuea to Corinnidae, and Mahafalytenus to Viridasiidae.
Assuntos
Genômica , Fenótipo , Filogenia , Aranhas , Animais , Austrália , Genoma , Aranhas/classificação , Aranhas/genéticaRESUMO
Spiders are a highly diversified group of arthropods and play an important role in terrestrial ecosystems as ubiquitous predators, which makes them a suitable group to test a variety of eco-evolutionary hypotheses. For this purpose, knowledge of a diverse range of species traits is required. Until now, data on spider traits have been scattered across thousands of publications produced for over two centuries and written in diverse languages. To facilitate access to such data, we developed an online database for archiving and accessing spider traits at a global scale. The database has been designed to accommodate a great variety of traits (e.g. ecological, behavioural and morphological) measured at individual, species or higher taxonomic levels. Records are accompanied by extensive metadata (e.g. location and method). The database is curated by an expert team, regularly updated and open to any user. A future goal of the growing database is to include all published and unpublished data on spider traits provided by experts worldwide and to facilitate broad cross-taxon assays in functional ecology and comparative biology. Database URL:https://spidertraits.sci.muni.cz/.
Assuntos
Artrópodes , Aranhas , Animais , Bases de Dados Factuais , Ecossistema , Fenótipo , Aranhas/genéticaRESUMO
Zootaxa published more than a thousand papers on Araneae from 2002 to the present, including descriptions of 3,833 new spider species and 177 new genera. Here we summarise the key contributions of Zootaxa to our current knowledge of global spider diversity. We provide a historical account of the researchers that have actively participated as editors, and recognize the more than 1,000 reviewers without whom none of this would have been possible. We conduct a simple analysis of the contributions by authors and geographic region, which allows us to uncover some of the underlying trends in current spider taxonomy. In addition, we examine some of the milestones in twenty years of spider systematic research in Zootaxa. Finally, we discuss future prospects of spider taxonomy and the role that Zootaxa and its younger sister journal Megataxa will play in it. We would like to dedicate this contribution to the memory of Norman I. Platnick, a crucial figure in the advancement of spider systematics.
Assuntos
Aranhas/classificação , Animais , Biodiversidade , Publicações Periódicas como AssuntoRESUMO
The genus Meriola Banks currently includes 24 known species of spiders distributed across America, especially in southern South America. They have a nearly straight and narrower posterior eye row compared to other American genera of Trachelidae, and elongated and sharply tipped ventral leg cuspules. The study of specimens of Meriola available in collections revealed two undescribed species, M. avalosi sp. nov. and M. peras sp. nov., and the previously unknown females of M. balcarce Platnick Ewing and M. quilicura Platnick Ewing, all of which are described here. The female of M. lineolata (Mello-Leitão) comb. nov., transferred from Cetonana Strand, is described for the first time. Two further new combinations are proposed here: M. macrocephala (Nicolet) comb. nov., transferred from Trachelopachys Simon, and M. setosa (Simon) comb. nov., transferred from Cetonana; these two species are also considered senior synonyms of M. barrosi (Mello-Leitão) and M. hyltonae (Mello-Leitão), respectively. Additionally, a new sex matching of M. ramirezi Platnick Ewing and M. davidi Grismado is proposed, with a redescription of the female of M. ramirezi provided. New geographical records are provided for all of the species, with images and a revised diagnosis for the genus and the previously known species.
Assuntos
Aranhas , Distribuição Animal , Animais , Feminino , GeografiaRESUMO
Two new caeculid mite species, Andocaeculus beatrizrosso sp. nov. and Andocaeculus burmeisteri sp. nov., are described and A. weyrauchi (Franz, 1964) is redescribed based on material collected at the type locality. All post-larval stages are described for A. weyrauchi and Andocaeculus beatrizrosso sp. nov. and stochastic variation in the idiosomal and appendages chaetotaxy is considered. A clade of Andocaeculus containing the three species (the A. weyrauchi group) is established based on morphological characters, and confirmed with a Bayesian phylogenetic analysis of sequences from the CO1 marker. As result of the same analysis, the absence of the (st) pair of setae on leg II is proposed as a derived condition for the genus Andocaeculus, and the presence of the φ solenidion on leg IV is a derived condition for some Andocaeculus species of the A. weyrauchi species group.
Assuntos
Ácaros e Carrapatos , Ácaros , Animais , Teorema de Bayes , Larva , FilogeniaRESUMO
Spider web anchors are attachment structures composed of the bi-phasic glue-fiber secretion from the piriform silk glands. The mechanical performance of the anchors strongly correlates with the structural assembly of the silk lines, which makes spider silk anchors an ideal system to study the biomechanical function of extended phenotypes and its evolution. It was proposed that silk anchor function guided the evolution of spider web architectures, but its fine-structural variation and whether its evolution was rather determined by changes of the shape of the spinneret tip or in the innate spinning choreography remained unresolved. Here, we comparatively studied the micro-structure of silk anchors across the spider tree of life, and set it in relation to spinneret morphology, spinning behavior and the ecology of the spider. We identified a number of apomorphies in the structure of silk anchors that may positively affect anchor function: (1) bundled dragline, (2) dragline envelope, and (3) dragline suspension ("bridge"). All these characters were apomorphic and evolved repeatedly in multiple lineages, supporting the notion that they are adaptive. The occurrence of these structural features can be explained with changes in the shape and mobility of the spinneret tip, the spinning behavior, or both. Spinneret shapes generally varied less than their fine-tuned movements, indicating that changes in construction behavior play a more important role in the evolution of silk anchor assembly. However, the morphology of the spinning apparatus is also a major constraint to the evolution of the spinning choreography. These results highlight the changes in behavior as the proximate and in morphology as the ultimate causes of extended phenotype evolution. Further, this research provides a roadmap for future bioprospecting research to design high-performance instant line anchors.
Assuntos
Seda , Aranhas , Animais , EcologiaRESUMO
The common ancestor of spiders likely used silk to line burrows or make simple webs, with specialized spinning organs and aerial webs originating with the evolution of the megadiverse "true spiders" (Araneomorphae). The base of the araneomorph tree also concentrates the greatest number of changes in respiratory structures, a character system whose evolution is still poorly understood, and that might be related to the evolution of silk glands. Emphasizing a dense sampling of multiple araneomorph lineages where tracheal systems likely originated, we gathered genomic-scale data and reconstructed a phylogeny of true spiders. This robust phylogenomic framework was used to conduct maximum likelihood and Bayesian character evolution analyses for respiratory systems, silk glands, and aerial webs, based on a combination of original and published data. Our results indicate that in true spiders, posterior book lungs were transformed into morphologically similar tracheal systems six times independently, after the evolution of novel silk gland systems and the origin of aerial webs. From these comparative data, we put forth a novel hypothesis that early-diverging web-building spiders were faced with new energetic demands for spinning, which prompted the evolution of similar tracheal systems via convergence; we also propose tests of predictions derived from this hypothesis.[Book lungs; discrete character evolution; respiratory systems; silk; spider web evolution; ultraconserved elements.].
Assuntos
Aranhas , Animais , Teorema de Bayes , Filogenia , Sistema Respiratório , Seda/genética , Aranhas/genéticaRESUMO
Studies in evolutionary biology and biogeography increasingly rely on the estimation of dated phylogenetic trees using molecular clocks. In turn, the calibration of such clocks is critically dependent on external evidence (i.e. fossils) anchoring the ages of particular nodes to known absolute ages. In recent years, a plethora of new fossil spiders, especially from the Mesozoic, have been described, while the number of studies presenting dated spider phylogenies based on fossil calibrations increased sharply. We critically evaluate 44 of these studies, which collectively employed 67 unique fossils in 180 calibrations. Approximately 54% of these calibrations are problematic, particularly regarding unsupported assignment of fossils to extant clades (44%) and crown (rather than stem) dating (9%). Most of these cases result from an assumed equivalence between taxonomic placement of fossils and their phylogenetic position. To overcome this limitation, we extensively review the literature on fossil spiders, with a special focus on putative synapomorphies and the phylogenetic placement of fossil species with regard to their importance for calibrating higher taxa (families and above) in the spider tree of life. We provide a curated list including 41 key fossils intended to be a basis for future estimations of dated spider phylogenies. In a second step, we use a revised set of 23 calibrations to estimate a new dated spider tree of life based on transcriptomic data. The revised placement of key fossils and the new calibrated tree are used to resolve a long-standing debate in spider evolution - we tested whether there has been a major turnover in the spider fauna between the Mesozoic and Cenozoic. At least 17 (out of 117) extant families have been recorded from the Cretaceous, implying that at least 41 spider lineages in the family level or above crossed the Cretaeous-Paleogene (K-Pg) boundary. The putative phylogenetic affinities of families known only from the Mesozoic suggest that at least seven Cretaceous families appear to have no close living relatives and might represent extinct lineages. There is no unambiguous fossil evidence of the retrolateral tibial apophysis clade (RTA-clade) in the Mesozoic, although molecular clock analyses estimated the major lineages within this clade to be at least â¼100 million years old. Our review of the fossil record supports a major turnover showing that the spider faunas in the Mesozoic and the Cenozoic are very distinct at high taxonomic levels, with the Mesozoic dominated by Palpimanoidea and Synspermiata, while the Cenozoic is dominated by Araneoidea and RTA-clade spiders.
RESUMO
Genital traits are among the fastest to evolve, and the processes that drive their evolution are intensively studied. Spiders are characterized by complex genitalia, but the functional role of the different structures during genital coupling is largely unknown. Members of one of the largest spider groups, the retrolateral tibial apophysis (RTA) clade, are characterized by a RTA on the male palp, which is thought to play a crucial role during genital coupling. However, the RTA was lost in several families including the species-rich wolf spiders (Lycosidae) leading to the hypothesis that the genital coupling is achieved by alternative mechanisms. Here, we investigate the genital interactions during copulation in the wolf spider Agalenocosa pirity (Zoicinae) on cryofixed mating pairs using electron, optical and X-ray microscopy and compare our findings with other lycosids and entelegyne spiders. We found an unprecedented coupling mechanism for lycosid spiders involving the palea and a membranous cuticle folding adjacent to the epigynal plate. Additionally, we show an uncommon coupling between the median apophysis and the contralateral genital opening, and confirmed that the terminal apophysis acts as functional conductor, as previously hypothesized for males of Zoicinae. Phylogenetic mapping of RTA indicated that the basal tibial process found in Agalenocosa is a secondary acquisition rather than a modified RTA.
Assuntos
Copulação/fisiologia , Aranhas/anatomia & histologia , Aranhas/fisiologia , Animais , Feminino , Processamento de Imagem Assistida por Computador , Masculino , Filogenia , Reprodução , Aranhas/classificação , Aranhas/ultraestrutura , Tíbia/anatomia & histologiaRESUMO
Spiders are known for producing specialized fibers. The radial orb-web, for example, contains tough silk used for the web frame and the capture spiral consists of elastic silk, able to stretch when prey impacts the web. In concert, silk proteins and web geometry affects the spider's ability to capture prey. Both factors have received considerable research attention, but next to no attention has been paid to the influence of fiber processing on web performance. Cribellate spiders produce a complex fiber alignment as their capture threads. With a temporally controlled spinneret movement, they connect different fibers at specific points to each other. One of the most complex capture threads is produced by the southern house spider, Kukulcania hibernalis (Filistatidae). In contrast to the so far characterized linear threads of other cribellate spiders, K. hibernalis spins capture threads in a zigzag pattern due to a slightly altered spinneret movement. The resulting more complex fiber alignment increased the thread's overall ability to restrain prey, probably by increasing the adhesion area as well as its extensibility. Kukulcania hibernalis' cribellate silk perfectly illustrates the impact of small behavioral differences on the thread assembly and, thus, of silk functionality.
Assuntos
Proteínas de Artrópodes/metabolismo , Comportamento Predatório/fisiologia , Aranhas/metabolismo , Aclimatação/fisiologia , Adaptação Fisiológica/fisiologia , Adesividade , Animais , Comportamento Animal/fisiologia , Seda/químicaRESUMO
Physical structures built by animals challenge our understanding of biological processes and inspire the development of smart materials and green architecture. It is thus indispensable to understand the drivers, constraints, and dynamics that lead to the emergence and modification of building behavior. Here, we demonstrate that spider web diversification repeatedly followed strikingly similar evolutionary trajectories, guided by physical constraints. We found that the evolution of suspended webs that intercept flying prey coincided with small changes in silk anchoring behavior with considerable effects on the robustness of web attachment. The use of nanofiber based capture threads (cribellate silk) conflicts with the behavioral enhancement of web attachment, and the repeated loss of this trait was frequently followed by physical improvements of web anchor structure. These findings suggest that the evolution of building behavior may be constrained by major physical traits limiting its role in rapid adaptation to a changing environment.
Assuntos
Evolução Biológica , Seda , Aranhas/fisiologia , Animais , Fenômenos Biomecânicos , Filogenia , Aranhas/classificaçãoRESUMO
Web-building spiders are an extremely diverse predatory group due to their use of physiologically differentiated silk types in webs. Major shifts in silk functional properties are classically attributed to innovations in silk genes and protein expression. Here, we disentangle the effects of spinning behavior on silk performance of the earliest types of capture threads in spider webs for the first time. Progradungula otwayensis produces two variations of cribellate silk in webs: ladder lines are stereotypically combed with the calamistrum while supporting rail lines contain silk that is naturally uncombed, spun without the intervention of the legs. Combed cribellate silk is highly extensible and adhesive suggesting that the reserve warp and cribellate fibrils brings them into tension only near or after the underlying axial fibers are broken. In contrast, these three fiber components are largely aligned in the uncombed threads and deform as a single composite unit that is 5-10x stronger, but significantly less adhesive, allowing them to act as structural elements in the web. Our study reveals that cribellate silk can occupy a surprisingly diverse performance space, accessible through simple changes in spider behavior, which may have facilitated the impressive diversification of web architectures utilizing this ancient silk.
Assuntos
Seda/metabolismo , Aranhas/metabolismo , Animais , Fenômenos Biomecânicos , Comportamento PredatórioRESUMO
The atypoid mygalomorphs include spiders from three described families that build a diverse array of entrance web constructs, including funnel-and-sheet webs, purse webs, trapdoors, turrets and silken collars. Molecular phylogenetic analyses have generally supported the monophyly of Atypoidea, but prior studies have not sampled all relevant taxa. Here we generated a dataset of ultraconserved element loci for all described atypoid genera, including taxa (Mecicobothrium and Hexurella) key to understanding familial monophyly, divergence times, and patterns of entrance web evolution. We show that the conserved regions of the arachnid UCE probe set target exons, such that it should be possible to combine UCE and transcriptome datasets in arachnids. We also show that different UCE probes sometimes target the same protein, and under the matching parameters used here show that UCE alignments sometimes include non-orthologs. Using multiple curated phylogenomic matrices we recover a monophyletic Atypoidea, and reveal that the family Mecicobothriidae comprises four separate and divergent lineages. Fossil-calibrated divergence time analyses suggest ancient Triassic (or older) origins for several relictual atypoid lineages, with late Cretaceous/early Tertiary divergences within some genera indicating a high potential for cryptic species diversity. The ancestral entrance web construct for atypoids, and all mygalomorphs, is reconstructed as a funnel-and-sheet web.
RESUMO
Lycosids are a diverse family of spiders distributed worldwide. Previous studies recovered some of the deeper splits of the family, but with little support. We present a broad phylogenetic analysis of the Lycosidae including a wide geographic sampling of representatives and all the subfamilies described to date. Additionally, we extend the amount of molecular data used in previous studies (28S, 12S and NADH) through the inclusion of two additional markers, the nuclear H3 and the mitochondrial COI. We estimated the divergence times through the inclusion of fossils as calibration points and used the phylogenetic hypothesis obtained to explore the evolution of particular traits associated with dispersal capabilities. We recovered most of the currently recognized subfamilies with high nodal support. Based on these results, we synonymize Piratinae and Wadicosinae with Zoicinae and Pardosinae, respectively, and revalidate the subfamily Hippasinae. We corroborated that lycosids are a family with a relatively young origin that diversified with the reduction of tropical forests and the advance of open habitats. We show that a gradual accumulation of behavioral traits associated with ambulatory dispersal made Lycosidae the most vagrant subfamily of spiders, with an impressive ability to disperse long distances which helps to explain the worldwide distribution of some very young clades, such as the members of the subfamily Lycosinae.