Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biomed Pharmacother ; 167: 115629, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804810

RESUMO

RATIONALE: Renal hypoxia is one of the currently highlighted pathophysiologic mechanisms of diabetic nephropathy (DN). Both hypoxia-inducible factor-1α (HIF-1α) and HIF-2α are major regulators of renal adaptive responses to hypoxia. OBJECTIVES: This study aims to compare the effects of vildagliptin (a dipeptidyl peptidase-IV inhibitor, DPP-4i) and empagliflozin (a sodium-glucose cotransporter 2 inhibitor, SGLT2i) on the differential expression of renal HIF-1α/2α. Tissue expression of prolylhydroxylase 3 (PHD3), a key regulator of HIF-2α stability, was also highlighted in a diabetic nephropathy rat model. Type 1 diabetes mellitus was induced and diabetic rats were treated with either Vildagliptin or Empagliflozin (10 mg/kg/d each) for 12 weeks. Improvements in the kidney functional and histopathological parameters were addressed and correlated to changes in the renal expression of HIF-1α/2α, and PHD3. Urinary KIM-1 concentration was tested as a correlate to HIF pathway changes. FINDINGS: Both vildagliptin- and empagliflozin-treated groups exhibited significant improvement in the functional, pathological, and ultra-structural renal changes induced by chronic diabetes. Compared to the untreated group, renal gene expression of HIF-1α was decreased while that of HIF-2α was increased in both treated groups, with significantly greater effects observed with SGLT2i. Renal PHD3 immune-reactivity was also decreased by both drugs, again with better efficacy for the SGLT2i. Importantly, improvements in the diabetic kidney biochemical and structural biomarkers were significantly correlated to PHD3 reductions and HIF-2α increments. CONCLUSIONS: Both DPP-4i and SGLT2i could delay the progression of DN through their differential modulating effects on the PHD3/ HIF-2α pathway with significantly better efficacy for SGLT2i.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Prolil Hidroxilases/metabolismo , Prolil Hidroxilases/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Vildagliptina/farmacologia , Rim , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Hipóxia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
3.
Psychopharmacology (Berl) ; 240(6): 1313-1332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37133558

RESUMO

RATIONALE: Risperidone is the first antipsychotic to be approved by Food and Drug Administration (FDA) for treating autism spectrum disorder (ASD). The potential efficacy of metformin in preventing and/or controlling ASD behavioral deficits was also recently reported. Suppression of hippocampus autophagy was suggested as a potential pathologic mechanism in ASD. OBJECTIVES: Is metformin's ability to improve ASD clinical phenotype driven by its autophagy-enhancing properties? And does hippocampus autophagy enhancement underlie risperidone's efficacy as well? Both questions are yet to be answered. METHODS: The effectiveness of metformin on alleviation of ASD-like behavioral deficits in adolescent rats exposed prenatally to valproic acid (VPA) was compared to that of risperidone. The potential modulatory effects of risperidone on hippocampal autophagic activity were also assessed and compared to those of metformin. RESULTS: Male offspring exposed to VPA during gestation exhibited marked anxiety, social impairment and aggravation of stereotyped grooming; such deficits were efficiently rescued by postnatal risperidone or metformin therapy. This autistic phenotype was associated with suppressed hippocampal autophagy; as evidenced by reduced gene/dendritic protein expression of LC3B (microtubule-associated proteins 1 light chain 3B) and increased somatic P62 (Sequestosome 1) protein aggregates. Interestingly, compared to risperidone, the effectiveness of metformin in controlling ASD symptoms and improving hippocampal neuronal survival was well correlated to its ability to markedly induce pyramidal neuronal LC3B expression while lowering P62 accumulation. CONCLUSIONS: Our work highlights, for the first time, positive modulation of hippocampus autophagy as potential mechanism underlying improvements in autistic behaviors, observed with metformin, as well as risperidone, therapy.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Ratos , Masculino , Animais , Feminino , Humanos , Ácido Valproico/efeitos adversos , Risperidona/uso terapêutico , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/prevenção & controle , Autofagia , Modelos Animais de Doenças , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente
4.
Food Funct ; 14(7): 3107-3125, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36942614

RESUMO

Opuntia ficus-indica (L.) Miller (OFI), belonging to the family Cactaceae, is widely cultivated not only for its delicious fruits but also for its health-promoting effects, which enhance the role of OFI as a potential functional food. In this study, the in vitro collagenase and elastase enzyme inhibitory effects of extracts from different parts of OFI were evaluated. The most promising extracts were formulated as creams at two concentrations (3 and 5%) to investigate their effects on a D-galactose (D-gal)-induced skin-aging mouse model. The ethanolic extracts of the peel and cladodes exhibited the highest enzyme inhibitory effects. Cream made from the extract of OFI peel (OP) (5%) and cream from OFI cladodes extract (OC) (5%) significantly decreased the macroscopic aging of skin scores. Only a higher concentration (5%) of OC showed the normalization of superoxide dismutase (SOD) and malondialdehyde (MDA) skin levels and achieved significant improvements as compared to the vitamin E group. Both OC and OP (5%) showed complete restoration of the normal skin structure and nearly normal collagen fibres upon histopathological examination. The Ultra-Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-ESI-TOF-MS) metabolite profiles revealed the presence of organic acids, phenolic acids, flavonoids, betalains, and fatty acids. Flavonoids were the predominant phytochemical class (23 and 22 compounds), followed by phenolic acids (14 and 17 compounds) in the ethanolic extracts from the peel and cladodes, respectively. The anti-skin-aging effects could be attributed to the synergism of different phytochemicals in both extracts. From these findings, the OFI peel and cladodes as agro-waste products are good candidates for anti-skin-aging phytocosmetics.


Assuntos
Opuntia , Extratos Vegetais , Envelhecimento da Pele , Creme para a Pele , Opuntia/química , Envelhecimento da Pele/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Animais , Camundongos , Modelos Animais , Creme para a Pele/química , Creme para a Pele/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Superóxido Dismutase/metabolismo , Malondialdeído/metabolismo , Espectrometria de Massa com Cromatografia Líquida
5.
Int J Biol Macromol ; 227: 1119-1131, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462588

RESUMO

Alzheimer's disease (AD) is known as "type 3 diabetes". As thioredoxin binding protein (TXNIP) has been shown to be involved in brain insulin resistance, the present study evaluated the roles of TXNIP, phospho-insulin receptor substrate 1 (P-IRS-1), and phosphatidyl inositol-3 kinase (PI3K) in the pathogenesis of AD. The potential ameliorative effect of bromelain compared to donepezil was evaluated in an aluminum chloride (AlCl3)-induced AD in rats. Behavioral tests demonstrated similar improvements in exploratory activity, cognitive and spatial memory functions, anxiety, and depression levels between rats treated with bromelain and donepezil. Donepezil was superior to bromelain in improving locomotor activity. Histopathological examinations demonstrated neuronal degeneration in the AlCl3 group that was almost normalized by bromelain and donepezil. Moreover, there was deposition of amyloid plaques in the AlCl3 group that was improved by bromelain and donepezil. Acetylcholine esterase levels were significantly increased in rats treated with AlCl3 group and significantly decreased in rats treated with bromelain and donepezil. Furthermore, AlCl3 group showed a significantly increased TXNIP and P-IRS1 and a significantly reduced PI3K levels. These effects were ameliorated by bromelain and donepezil treatment. The present study demonstrates a previously unreported modulatory effect of bromelain on the TXNIP/P-IRS-1/PI3K axis in AD model.


Assuntos
Doença de Alzheimer , Ratos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cloreto de Alumínio , Alumínio/toxicidade , Donepezila , Bromelaínas , Modelos Animais de Doenças , Fosfatidilinositol 3-Quinases , Proteínas de Ciclo Celular
6.
Life Sci ; 311(Pt A): 121145, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36336129

RESUMO

AIM: We compared the efficacy of n3-polyunsaturated fatty acids (n3-PUFAs) and metformin in halting the progression of non-alcoholic fatty liver disease (NAFLD) developed in the milieu of insulin deficiency. MAIN METHODS: NAFLD was induced by a chronic high-fat diet (HFD) in male Sprague Dawley rats, rendered diabetic by a low dose streptozotocin (STZ). Diabetic rats were treated with n3-PUFAs (300 mg/kg/d) or metformin (150 mg/kg/d) for 8 weeks. Improvements in the NAFLD score and hepatic insulin resistance (IR) were addressed and correlated to changes in the hepatic expression of Forkhead box protein O1 (FOXO-1), microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) and gamma-aminobutyric acid receptor-associated protein-like 1 (GABARAPL1) genes. Hepatic peroxisome proliferator-activated receptor alpha (PPAR-α), and B-cell lymphoma 2 (Bcl-2) protein expression was also assessed. KEY FINDINGS: Driven by insulin deficiency and HFD, the FOXO-1 gene along with its downstream targets, MAP1LC3B and GABARAPL1, were highly expressed in the liver tissue of the HFD/STZ group. Meanwhile, hepatic expression of PPAR-α and Bcl-2 was markedly decreased. These abnormalities coincided with a marked increase in the hepatic IR and NAFLD activity. Comparable to metformin, n3-PUFAs were able to rearrange hepatic PPAR-α and FOXO-1 expression in HFD/STZ rats, resulting in improved diabetic/steatotic liver phenotype. SIGNIFICANCE: Along with the enhancement of PPAR-α expression, inhibition of FoxO1/GABARAPL1/MAP1LC3B transcription is suggested as a core mechanism for the protective effects of n3-PUFAs on hepatic IR and NAFLD. Under conditions of insulin deficiency, n3-PUFAs retain their potential as a safe and promising approach for the control of NAFLD.


Assuntos
Diabetes Mellitus Experimental , Ácidos Graxos Ômega-3 , Resistência à Insulina , Metformina , Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Metformina/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley
7.
Cell Biochem Funct ; 40(1): 90-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34855213

RESUMO

The study was designed to assess the possible augmented antidiabetic effects of combining quercetin and liraglutide in a type 1 diabetes model, with emphasis on the contribution of hepatic thioredoxin interacting protein (TXNIP)/insulin receptor substrate 1 (IRS-1)/phosphatidyl inositol-3 kinase (PI3K) pathway. The wound-healing effects were also examined. Diabetes was induced by a single i.p STZ injection (55 mg/kg). Diabetic rats were treated with either quercetin (100 mg/kg/day, orally) or liraglutide (0.3 mg/kg/twice daily, S.C.) or their combination. Drugs were also applied topically on the wound. Blood glucose levels, serum albumin, total protein, total cholesterol and triglycerides were measured. Histopathological examination of the liver, pancreas and skin tissues was performed using haematoxylin and eosin staining. The hepatic malondialdehyde level was measured spectrophotometrically. Hepatic TXNIP and PI3K levels were measured by enzyme-linked immunsorbent assay (ELISA). Tissue expression of IRS-1 and phospho-IRS-1 (Ser 616) was assessed by immunohistochemistry. Quercetin, liraglutide and their combination effectively decreased blood glucose levels, improved lipid profile, upregulated albumin and total protein serum levels and reduced hepatic oxidative stress with the combination being most effective. Moreover, the combination group showed enhanced wound-healing effects and almost normalized hepatic and pancreatic histopathology. Quercetin and/or liraglutide significantly decreased TXNIP levels and serine phosphorylation of IRS-1 and increased PI3K levels compared to the diabetic untreated group. Interestingly, only the combination therapy normalized hepatic IRS-1 expression. The combination of quercetin and liraglutide showed enhanced antidiabetic effects, possibly through lowering hepatic TXNIP levels, with the resultant up-regulation of the IRS-1/PI3K pathway.


Assuntos
Diabetes Mellitus Experimental , Hipoglicemiantes , Animais , Proteínas de Ciclo Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Proteínas Substratos do Receptor de Insulina/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Quercetina/farmacologia , Quercetina/uso terapêutico , Ratos
8.
Life Sci ; 285: 119982, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34592232

RESUMO

AIMS: Diabetes, a serious worldwide problem, is modulated via inflammation and oxidative stress. Bromelain, a natural compound, recently attracts interest due to its anti-inflammatory effects, while its mode of action remains not properly understood. Thus, investigating the antidiabetic effect of bromelain is promising. MATERIALS AND METHODS: Rats were randomized into normal group, STZ group (were administrated single intraperitoneal (i.p) injection of 55 mg/kg streptozotocin (STZ)) and STZ + Bro group (were administrated single i.p injection of STZ, 72 h later were i.p administrated 10 mg/kg/day bromelain for 15 days). Wound healing ability was investigated for different groups. Spectrophotometry, ELISA, histopathological and immunohistochemical techniques were applied. KEY FINDINGS: Bromelain significantly decreased fasting blood glucose, serum triglycerides and cholesterol and hepatic malondialdehyde levels compared with STZ group. Moreover, Bromelain significantly increased serum albumin and total protein levels and percentage of wound healing compared with STZ group. These results were confirmed through the histopathological examination of liver, pancreas, and skin tissues. Investigating the molecular mechanism underlying these effects, STZ injection caused significant increase in hepatic oxidized-LDL (Oxi-LDL) and lysophosphatidic acid (LPA) levels and hepatic lysophosphatidic acid receptor 1 (LPAR1), and beta secretase (BACE1) protein tissue expressions, while bromelain significantly aborted these effects. Thus, STZ caused upregulation of Oxi-LDL/LPA/LPAR1/BACE1 pathway, while bromelain significantly ameliorated these effects. SIGNIFICANCE: To our best knowledge, this study represents the 1st study investigating Oxi-LDL/LPA/LPAR1/BACE1 pathway in STZ-induced diabetes in rats, in addition to the promising ameliorative effect of bromelain in STZ-induced diabetes in rats.


Assuntos
Bromelaínas/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Lipoproteínas LDL/metabolismo , Lisofosfolipídeos/metabolismo , Receptores de Ácidos Lisofosfatídicos/fisiologia , Animais , Bromelaínas/farmacologia , Diabetes Mellitus Tipo 1/patologia , Masculino , Redes e Vias Metabólicas , Ratos , Estreptozocina
9.
J Nutr Biochem ; 97: 108798, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34102283

RESUMO

Diabetic cardiomyopathy is a primary cause of increased morbidity and mortality in diabetics. Evidence has suggested a pivotal role for interrupted mitochondrial dynamics and quality control machinery in the onset and development of diabetic cardiomyopathy. Sequestosome 1 (SQSTM1) is a major reporter of selective autophagic activity. Other than controlling the expression of genes involved in mitochondrial biogenesis, recently peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) was reported to directly affect SQSTM1 gene expression. Calcineurin, a pivotal mediator of cardiac hypertrophy, has been also linked to enhanced expression of SQSTM1. This study aimed to test the cardioprotective effects of adding ω-3 polyunsaturated fatty acids (PUFAs) to metformin in a rat model of type 2 diabetes mellitus and to evaluate the molecular mechanisms underlying their effects on mitochondrial quality. Diabetes was induced in male Sprague Dawley rats by a high-fat diet for 6 weeks, followed by a low-dose streptozotocin (35 mg/kg). Diabetic rats were either treated with metformin (150 mg/kg/d), ω-3 PUFAs (300 mg/kg/d), or their combination in the same doses for further 8 weeks. Along with metabolic and pathological derangements, we report that correlating with electron microscopic evidence of mitochondrial degeneration, gene expression of the autophagic indicators SQSTM1, PGC-1α, and calcineurin were decreased in the hearts of diabetic rats. Independent of its anti-hyperglycemic effects, metformin successfully preserved mitochondrial integrity and upregulated myocardial PGC-1α, calcineurin, and SQSTM1 gene expression. ω-3 PUFAs possess synergistic cardioprotection when added to metformin, suggested by improvements in myocardial ultrastructure, autophagic activity, and SQSTM1 gene expression.


Assuntos
Autofagia , Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/prevenção & controle , Ácidos Graxos Ômega-3/administração & dosagem , Metformina/administração & dosagem , Animais , Calcineurina/genética , Calcineurina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/metabolismo , Dieta Hiperlipídica , Masculino , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miocárdio/metabolismo , Miocárdio/ultraestrutura , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Regulação para Cima
10.
Exp Clin Endocrinol Diabetes ; 129(12): 899-907, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32559789

RESUMO

BACKGROUND: Human glucagon-like peptide-1 analogue, Liraglutide, has shown cardioprotective effects in animal and clinical studies of type 2 diabetes mellitus. This study was conducted to assess the effect of Liraglutide on diabetes-induced myocardial electrical remodeling. MATERIALS AND METHODS: A rat model of type 2 diabetes mellitus was induced by high-fat diet and low dose Streptozotocin (35 mg/kg). Diabetic rats were randomized into 4 subgroups (n=6-7): diabetic-untreated, diabetics treated with Liraglutide, diabetics treated with Ramipril, and diabetics treated with Metformin in addition to a control group. Changes in serum glucose, insulin, lipid profile and revised quantitative insulin sensitivity check index (QUICKI index) were assessed. QT and QTc intervals were measured and the degree of cardiac interstitial and perivascular fibrosis was examined. The expression of myocardial Ito channel α subunits, gap junction protein; Kv 4.2/4.3 and connexin 43 (Cx43) respectively, were assessed by western blotting and immunohistochemistry. RESULTS: Similar to Ramipril, both Liraglutide and Metformin effectively inhibited the diabetes-induced myocardial hypertrophy and fibrosis. However, Liraglutide treatment significantly improved Kv 4.2/4.3 and Cx43 expression/distribution and prevented diabetes-related QTc interval prolongation. CONCLUSIONS: We have shown that pathological alterations in myocardial Cx43 expression and distribution, in addition to reduced Ito channel expression, may underlie the QTc interval prolongation in high-fat diet/STZ rat model of type 2 diabetes mellitus. The beneficial effects of Liraglutide, as those of Ramipril, on cardiac electrophysiology could be at least attributed to its direct ability to normalize expression and distribution of Cx43 and Ito channels in the diabetic rat heart.


Assuntos
Conexina 43/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cardiomiopatias Diabéticas/tratamento farmacológico , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Miocárdio/metabolismo , Canais de Potássio Shal/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Distribuição Aleatória , Ratos , Canais de Potássio Shal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA