Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 151: 107680, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39084151

RESUMO

Breast cancer poses a significant health risk worldwide. However, the effectiveness of current chemotherapy is limited due to increasing drug resistance and side effects, making it crucial to develop new compounds with novel mechanism of action that can surpass these limitations. As a consequence of their reversible and targeted mechanism, DNA minor groove binders (MGBs) are considered as a relatively safer and more effective alternative. In this study, transcriptomic analysis was conducted to reveal the dysregulated genes and signaling pathways in MCF7 cancer cells following treatment with novel MGB ligands to gain insights into the mechanism of action of MGBs at the molecular level. The transcriptomic results were validated using real-time PCR. The findings of this study indicate that the investigated MGBs primarily inhibit the genes associated with the estrogen receptor. Remarkably, ligand 5 showed downregulation of 34 out of the 35 genes regulated by estrogen receptor, highlighting its potential as a promising candidate for breast cancer therapy.

2.
Bioorg Chem ; 148: 107414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38733748

RESUMO

Spectroscopic, biochemical, and computational modelling studies have been used to assess the binding capability of a set of minor groove binding (MGB) ligands against the self-complementary DNA sequences 5'-d(CGCACTAGTGCG)-3' and 5'-d(CGCAGTACTGCG)-3'. The ligands were carefully designed to target the DNA response element, 5'-WGWWCW-3', the binding site for several nuclear receptors. Basic 1D 1H NMR spectra of the DNA samples prepared with three MGB ligands show subtle variations suggestive of how each ligand associates with the double helical structure of both DNA sequences. The variations among the investigated ligands were reflected in the line shape and intensity of 1D 1H and 31P-{1H} NMR spectra. Rapid visual inspection of these 1D NMR spectra proves to be beneficial in providing valuable insights on MGB binding molecules. The NMR results were consistent with the findings from both UV DNA denaturation and molecular modelling studies. Both the NMR spectroscopic and computational analyses indicate that the investigated ligands bind to the minor grooves as antiparallel side-by-side dimers in a head-to-tail fashion. Moreover, comparisons with results from biochemical studies offered valuable insights into the mechanism of action, and antitumor activity of MGBs in relation to their structures, essential pre-requisites for future optimization of MGBs as therapeutic agents.


Assuntos
DNA , DNA/química , DNA/metabolismo , Ligantes , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Estrutura Molecular , Conformação de Ácido Nucleico , Sítios de Ligação , Relação Estrutura-Atividade , Modelos Moleculares , Relação Dose-Resposta a Droga , Espectroscopia de Ressonância Magnética , Linhagem Celular Tumoral
3.
Life Sci ; 346: 122639, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615747

RESUMO

Chromatin undergoes dynamic regulation through reversible histone post-translational modifications (PTMs), orchestrated by "writers," "erasers," and "readers" enzymes. Dysregulation of these histone modulators is well implicated in shaping the cancer epigenome and providing avenues for precision therapies. The approval of six drugs for cancer therapy targeting histone modulators, along with the ongoing clinical trials of numerous candidates, represents a significant advancement in the field of precision medicine. Recently, it became apparent that histone PTMs act together in a coordinated manner to control gene expression. The intricate crosstalk of histone PTMs has been reported to be dysregulated in cancer, thus emerging as a critical factor in the complex landscape of cancer development. This formed the foundation of the swift emergence of co-targeting different histone modulators as a new strategy in cancer therapy. This review dissects how histone PTMs, encompassing acetylation, phosphorylation, methylation, SUMOylation and ubiquitination, collaboratively influence the chromatin states and impact cellular processes. Furthermore, we explore the significance of histone modification crosstalk in cancer and discuss the potential of targeting histone modification crosstalk in cancer management. Moreover, we underscore the significant strides made in developing dual epigenetic inhibitors, which hold promise as emerging candidates for effective cancer therapy.


Assuntos
Histonas , Neoplasias , Medicina de Precisão , Processamento de Proteína Pós-Traducional , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Histonas/metabolismo , Medicina de Precisão/métodos , Animais , Epigênese Genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Acetilação , Cromatina/metabolismo
4.
Life Sci ; 342: 122525, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423171

RESUMO

Breast cancer is a principal cause of cancer-related mortality in female worldwide. While many approved therapies have shown promising outcomes in treating breast cancer, understanding the intricate signalling pathways controlling cell death is crucial for optimizing the treatment outcome. A growing body of evidence has unveiled the aberrations in multiple cell death pathways across diverse cancer types, highlighting these pathways as appealing targets for therapeutic interventions. In this review, we provide a comprehensive overview of the current state of knowledge on the cell death signalling mechanisms with a particular focus on their impact on the response of breast cancer cells to approved therapies. Additionally, we discuss the potentials of combination therapies that exploit the synergy between approved drugs and therapeutic agents targeting modulators of cell death pathways.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Transdução de Sinais , Morte Celular , Resultado do Tratamento
5.
iScience ; 27(1): 108659, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38235331

RESUMO

The development of hybrid compounds has been widely considered as a promising strategy to circumvent the difficulties that emerge in cancer treatment. The well-established strategy of adding acetyl groups to certain drugs has been demonstrated to enhance their therapeutic efficacy. Based on our previous work, an approach of accommodating two chemical entities into a single structure was implemented to synthesize new acetylated hybrids (HH32 and HH33) from 5-aminosalicylic acid and 4-thiazolinone derivatives. These acetylated hybrids showed potential anticancer activities and distinct metabolomic profile with antiproliferative properties. The in-silico molecular docking predicts a strong binding of HH32 and HH33 to cell cycle regulators, and transcriptomic analysis revealed DNA repair and cell cycle as the main targets of HH33 compounds. These findings were validated using in vitro models. In conclusion, the pleiotropic biological effects of HH32 and HH33 compounds on cancer cells demonstrated a new avenue to develop more potent cancer therapies.

6.
Front Microbiol ; 14: 1336856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318129

RESUMO

Multidrug-resistant bacterial infections present a serious challenge to global health. In addition to the spread of antibiotic resistance, some bacteria can form persister cells which are tolerant to most antibiotics and can lead to treatment failure or relapse. In the present work, we report the discovery of a new class of small molecules with potent antimicrobial activity against Gram-positive bacteria and moderate activity against Gram-negative drug-resistant bacterial pathogens. The lead compound SIMR 2404 had a minimal inhibitory concentration (MIC) of 2 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-intermediate Staphylococcus aureus (VISA). The MIC values against Gram-negative bacteria such as Escherichia coli and Actinobacteria baumannii were between 8-32 µg/mL. Time-kill experiments show that compound SIMR 2404 can rapidly kill tested bacteria. Compound SIMR 2404 was also found to rapidly kill MRSA persisters which display high levels of tolerance to conventional antibiotics. In antibiotic evolution experiments, MRSA quickly developed resistance to ciprofloxacin but failed to develop resistance to compound SIMR 2404 even after 24 serial passages. Compound SIMR 2404 was not toxic to normal human fibroblast at a concentration of 4 µg/mL which is twice the MIC concentration against MRSA. However, at a concentration of 8 µg/mL or higher, it showed cytotoxic activity indicating that it is not ideal as a candidate against Gram-negative bacteria. The acceptable toxicity profile and rapid antibacterial activity against MRSA highlight the potential of these molecules for further studies as anti-MRSA agents.

7.
Ann Med ; 55(2): 2305308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38253025

RESUMO

BACKGROUND: Glioblastoma (GBM) is a primary malignancy of the central nervous system and is classified as a grade IV astrocytoma by the World Health Organization (WHO). Although GBM rarely metastasizes, its prognosis remains poor. Moreover, the standard treatment for GBM, temozolomide (TMZ), is associated with chemoresistance, which is a major factor behind GBM-related deaths. Investigating drugs with repurposing potential in the context of GBM is worthwhile to bypass lengthy bench-to-bedside research. The field of omics has garnered significant interest in scientific research because of its potential to delineate the intricate regulatory network underlying tumor development. In particular, proteomic and metabolomic analyses are powerful approaches for the investigation of metabolic enzymes and intermediate metabolites since they represent the functional end of the cancer phenotype. METHODS: We chose two of the most widely prescribed anticancer drugs, cisplatin and paclitaxel. To our knowledge, the current literature lacks studies examining their effects on metabolic and proteomic alterations in GBM. We employed the mass spectrometry technological platform 'UHPLC-Q-TOF-MS/MS' to examine the changes in the proteome and metabolome profiles of the U87 cell line with defined concentrations of cisplatin and/or paclitaxel via an untargeted approach. RESULTS: A total of 1,419 distinct proteins and 90 metabolites were generated, and subsequent analysis was performed. We observed that upon treatment with cisplatin (9.5 µM), U87 cells exhibited apparent efforts to cope with this exogenous stressor, understanding the effect of paclitaxel (5.3 µM) on altering the transport machinery of the cell, and how the combination of cisplatin and/or paclitaxel suggests potential interactions with promising benefits in GBM therapeutics. CONCLUSION: Our research provides a detailed map of alterations in response to cisplatin and paclitaxel treatment, provides crucial insights into the molecular basis of their action, and paves the way for further research to identify molecular targets for this elusive malignancy.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Cisplatino/farmacologia , Proteômica , Espectrometria de Massas em Tandem , Paclitaxel/farmacologia
8.
Int. j. morphol ; 37(1): 212-220, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-990029

RESUMO

SUMMARY: In spinal cord injury, radical treatment is still a persistent hope for patients and clinicians. Our study aimed to determine the different histological changes in central, cranial and caudal sites of compressed spinal cord as a result of neuroectodermal stem cells (NESCs) transplantation in rats. For extraction of NESCs, future brains were extracted from mice embryos (10-days old) and cultured. Eighty, male rats were divided randomly into control, sham (20 rats each); while 40 rats were subjected to compressed spinal cord injury (CSCI). Seven days after spinal cord injury, rats were subdivided into 2 groups (20 rats each); an untreated and treated with NESCs injected cranial and caudal to the site of the spinal cord injury. Rats were sacrificed 4 weeks after transplantations of NESCs and specimens from the spinal cord at the central, cranial and caudal to site of spinal cord injury were proceeded to be stained with haematoxylin & eosin, osmic acid and Immunohistochemistry of glial fibrillary acidic protein (GFAP). Sections of CSCI revealed areas of hemorrhages, necrosis and cavitation limited by reactive astrocytosis, with upregulation of GFAP expression. Evidence of remyelination and mitigation of histopathological features, reactive astrocytosis in CSCI sections were more pronounced in cranial than in caudal region. NESCs transplantation ameliorated the pathological changes, promoted remyelination.


RESUMEN: En la lesión de la médula espinal, el tratamiento radical aún sigue siendo el tratamiento preferente para los pacientes y los médicos. El objetivo de este estudio fue determinar los diferentes cambios histológicos en los sitios centrales, craneales y caudales de la médula espinal comprimida, como resultado del trasplante de células madre neuroectodérmicas (NESCs) en ratas. Para la extracción de NESCs, se extrajeron y cultivaron los cerebros de embriones de ratones de 10 días de edad. Se dividieron 80 ratas macho aleatoriamente en grupos control, simulado (20 ratas cada una); mientras que 40 ratas fueron sometidas a lesión de la médula espinal comprimida (CSCI). Siete días después de la lesión de la médula espinal, las ratas se subdividieron en 2 grupos (20 ratas cada uno); un grupo no tratado y un grupo tratado con NESCs inyectado craneal y caudal en el sitio de la lesión. Las ratas fueron sacrificadas 4 semanas después de los trasplantes de NESCs y las muestras de la médula espinal en el centro, craneal y caudal del sitio de lesión fueron teñidas con hematoxilina y eosina, ácido ósmico e inmunohistoquímica de la proteína ácida fibrilar glial (GFAP). Las secciones de CSCI revelaron áreas de hemorragias, necrosis y cavitación limitadas por astrocitosis reactiva, con una regulación positiva de la expresión de GFAP. Evidencia de remielinización y mitigación de características histopatológicas, astrocitosis reactiva en secciones de CSCI fue más pronunciada en la región craneal que en la caudal. El trasplante de NESC mejoró los cambios patológicos, promoviendo la remielinización.


Assuntos
Animais , Masculino , Ratos , Traumatismos da Medula Espinal/cirurgia , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco , Imuno-Histoquímica , Ratos Wistar , Ectoderma , Remielinização , Proteína Glial Fibrilar Ácida
9.
Int. j. morphol ; 37(1): 349-357, 2019. graf
Artigo em Inglês | LILACS | ID: biblio-990050

RESUMO

SUMMARY: The aim of this study was to determine the possible regenerative effect of neuroectodermal stem cells on the ultrastructural, and locomotor function resulting from compressed injury to the spinal cord in a rat model. Forty male rats were divided into control and sham groups (20 rats each). Compressed spinal cord injured (CSCI) were forty rats which subdivided equally into: untreated, treated by neuroectodermal stem cells (NESCs). After four weeks, all rats in different groups were scarified, samples were taken from central, cranial, and caudal to the site of spinal cord injury. Specimens were prepared for light and electron microscopic examination. The number of remyelinated axons in central, cranial and caudal regions to the injured spinal cord after transplantation of NESCs was counted. The open field test assessed the locomotor function. Results revealed that compressed spinal cord injury resulted in loss and degeneration of numerous nerve fibers, myelin splitting and degeneration of mitochondria. Four weeks after transplantation of NESCs regenerated axons were noticed in cranial and central sites, while degenerate axons were noticed caudal to the lesion. Number of remyelinated axons was significantly increased in both central and cranial to the site of spinal cord injury in comparison with caudal region which had the least number of remyelinated axons. Transplantation of NESCs improved significantly the locomotor functional activity In conclusion, neuroectodermal stem cells transplantation ameliorated the histopathological and ultrastructural changes, and improved the functional locomotor activity in CSCI rat.


RESUMEN: El objetivo de este estudio fue determinar el posible efecto regenerativo de las células madre neuroectodérmicas en la función ultraestructural y locomotora de una lesión comprimida en la médula espinal en un modelo de rata. Cuarenta ratas macho se dividieron en grupos control y sham (20 ratas en cada grupo). La médula espinal lesionada (CSCI) tenía cuarenta ratas que se subdividieron de igual forma en los siguientes grupos: no tratadas, tratadas con células madre neuroectodérmicas (NESCs). Al término de cuatro semanas, todas las ratas en los diferentes grupos fueron escarificadas, se tomaron muestras de las áreas central, craneal y caudal en relación al sitio de la lesión de la médula espinal. Las muestras fueron preparadas para examen microscópico de luz y electrónica. Se contó el número de axones remielinizados en las regiones central, craneal y caudal de la médula espinal lesionada después del trasplante de NESCs. La prueba de campo abierto evaluó la función locomotora. Los resultados revelaron que la lesión de la médula espinal comprimida provocó la pérdida y degeneración de numerosas fibras nerviosas, la división de la mielina y la degeneración de las mitocondrias. Cuatro semanas después del trasplante de NESCs, se notaron axones regenerados en los sitios craneales y centrales, mientras que los axones degenerados se notaron caudal a la lesión. El número de axones remielinizados aumentó significativamente tanto en el centro como en el cráneo hasta el sitio de la lesión de la médula espinal en comparación con la región caudal que tenía el menor número de axones remielinizados. El trasplante de NESCs mejoró significativamente la actividad funcional locomotora. En conclusión, el trasplante de células madre neuroectodérmicas mejoró los cambios histopatológicos y ultraestructurales, y mejoró la actividad locomotora funcional en la rata CSCI.


Assuntos
Animais , Feminino , Ratos , Traumatismos da Medula Espinal/terapia , Transplante de Células-Tronco/métodos , Regeneração Nervosa/fisiologia , Medula Espinal/ultraestrutura , Axônios , Atividade Motora
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA