Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Materials (Basel) ; 17(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38893923

RESUMO

This paper presents the results of an extensive investigation into the durability of cold spray repairs to corrosion damage in AA7075-T7351 aluminium alloy specimens where, prior to powder deposition, the surface preparation involved grit blasting. In this context, it is shown that the growth of small naturally occurring cracks in cold spray repairs to simulated corrosion damage can be accurately computed using the Hartman-Schijve crack growth equation in a fashion that is consistent with the requirements delineated in USAF Structures Bulletin EZ-SB-19-01, MIL-STD-1530D, and the US Joint Services Structural Guidelines JSSG2006. The relatively large variation in the da/dN versus ΔK curves associated with low values of da/dN highlights the fact that, before any durability assessment of a cold spray repair to an operational airframe is attempted, it is first necessary to perform a sufficient number of tests so that the worst-case small crack growth curve needed to perform the mandated airworthiness certification analysis can be determined.

2.
Materials (Basel) ; 17(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38612213

RESUMO

The present study examines the high-temperature (500-800 °C) oxidation behavior of Fe-10Cr-(3,5) Al alloys and studies the effect of nanocrystalline structure and Al content on their resistance to oxidation. The nanocrystalline (NC) alloy powder was synthesized via planetary ball milling. The prepared NC alloy powder was consolidated using spark plasma sintering to form NC alloys. Subsequently, an annealing of the NC alloys was performed to transform them into microcrystalline (MC) alloys. It was observed that the NC alloys exhibit superior resistance to oxidation compared to their MC counterparts at high temperatures. The superior resistance to oxidation of the NC alloys is attributed to their considerably finer grain size, which enhances the diffusion of those elements to the metal-oxide interface that forms the protective oxide layer. Conversely, the coarser grain size in MC alloys limits the diffusion of the oxide-forming components. Furthermore, the Fe-10Cr-5Al alloy showed greater resistance to oxidation than the Fe-10Cr-3Al alloy.

3.
Materials (Basel) ; 17(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38541491

RESUMO

Prompted by the unexpected observation of the pitting of the weldments of a highly corrosion- and pitting-resistant duplex stainless steel, SAF2507, in chloride solutions with nitride addition, the pitting and corrosion resistance of SAF2507 and its weldments were investigated in chloride solutions with and without different levels of nitrite. The Incoloy 825 and 316L austenitic stainless steels were included for the purpose of developing a comparative appreciation. The microstructures of the weldments were characterised, and 316L showed a profound influence of nitrite addition in inhibiting pitting, while 'meta-stable' pitting transients that were clearly visible in the chloride solution without nitrite were absent when nitrite was added. Both the parent metal and the weldment of SAF2507 had similar pitting potential (Ep) in 0.1 M NaCl without nitrite, which was the highest Ep among the three alloys tested. Additions of nitrite at low concentrations had an inhibitive effect on pitting, whereas higher nitrite contents had a deleterious effect on pitting resistance. On the other hand, Incoloy 825 showed a trend of Ep ennoblement with an increasing nitrite content of 0.1 M NaCl, and the weldment underwent greater ennoblement. Moreover, 316L showed a trend similar to Incoloy 825; however, the Ep ennoblements were significantly more pronounced for both the weldment and the base metal of 316L.

4.
ACS Appl Mater Interfaces ; 16(1): 1659-1674, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38108601

RESUMO

Mg and its alloys are promising biodegradable materials for orthopedic implants and cardiovascular stents. The first interactions of protein molecules with Mg alloy surfaces have a substantial impact on their biocompatibility and biodegradation. We investigate the early-stage electrochemical, chemical, morphological, and electrical surface potential changes of alloy WE43 in either 154 mM NaCl or Hanks' simulated physiological solutions in the absence or presence of bovine serum albumin (BSA) protein. WE43 had the lowest electrochemical current noise (ECN) fluctuations, the highest noise resistance (Zn = 1774 Ω·cm2), and the highest total impedance (|Z| = 332 Ω·cm2) when immersed for 30 min in Hanks' solution. The highest ECN, lowest Zn (1430 Ω·cm2), and |Z| (49 Ω·cm2) were observed in the NaCl solution. In the solutions containing BSA, a unique dual-mode biodegradation was observed. Adding BSA to a NaCl solution increased |Z| from 49 to 97 Ω·cm2 and decreased the ECN signal of the alloy, i.e., the BSA inhibited corrosion. On the other hand, the presence of BSA in Hanks' solution increased the rate of biodegradation by decreasing both Zn and |Z| while increasing ECN. Finally, using scanning Kelvin probe force microscopy (SKPFM), we observed an adsorbed nanolayer of BSA with aggregated and fibrillar morphology only in Hanks' solution, where the electrical surface potential was 52 mV lower than that of the Mg oxide layer.


Assuntos
Ligas , Magnésio , Teste de Materiais , Magnésio/química , Ligas/química , Cloreto de Sódio , Soroalbumina Bovina , Stents , Corrosão
5.
Materials (Basel) ; 16(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895698

RESUMO

Wire arc additive manufacturing (WAAM) was employed to fabricate 4043 aluminum alloy walls. To investigate the effects of sinusoidal, triangular, and rectangular waveforms of alternating current (AC) and their transients on the wall geometry, microstructure evolution, hardness, and wear properties were evaluated. The root mean square (RMS) current value was maximum for the rectangular and minimum for the triangular waveform. The section produced by the triangular waveform had the highest height-to-width ratio, indicating that this waveform can be a favorable choice for creating components using WAAM. The optical micrographs of the transverse cross-section of the printed sections revealed the grain structure produced with this waveform to be heterogeneous, having a columnar dendritic structure at the bottom and equiaxed at the top portion. The waveforms also had an impact on the hardness and wear characteristics of all the walls, which were attributed to their cooling rate.

6.
Small ; : e2305320, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37736693

RESUMO

Bipolar plates, a critical component of proton exchange membrane fuel cell (PEMFC), are constructed out of alloys of Ti, Pt, Cr, or graphitic materials that have limitations. Electrical conductivity, cost, and corrosion resistance are among the critical considerations for bi-polar plate material. Graphene, which possesses impressive conductivity and toughness, is an attractive option as coating on metallic substrates of PEMFC bipolar plates. This study investigates corrosion resistance and its durability due to graphene developed by chemical vapor deposition on a pure Ni-Cu alloy and a commercial Ni-Cu alloy in 0.5 m H2 SO4 environment, with a view to exploring use of graphene coated Ni-Cu alloys for the construction of PEMFC bipolar plates. The graphene coating on the pure alloy shows remarkably superior corrosion resistance than the commercial alloy that is attributed to the former's ability to develop considerably defect-free graphene.

7.
Polymers (Basel) ; 15(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37688277

RESUMO

This article reports the characterisation of pyrolysis of automotive shredder residue using in situ synchrotron IR, gas-phase IR, and thermal analyses to explore if the automotive shredder residue can be converted into value-added products. When heating to ~600 °C at different heating rates, thermal analyses suggested one- to two-stage pyrolysis. Transformations in the first stage, at lower temperatures, were attributed to the degradation of carbonyl, hydroxyl, or carboxyl functional stabilisers (aldehyde and ether impurities, additives, and stabilisers in the ASR). The second stage transformations, at higher temperatures, were attributed to the thermal degradation of the polymer char. Simultaneous thermal analyses and gas-phase IR spectroscopy confirmed the evolution of the gases (alkanes (CH4), CO2, and moisture). The synchrotron IR data have demonstrated that a high heating rate (such as 150 °C/min) results in an incomplete conversion of ASRs unless sufficient time is provided. The thermogravimetry data fit the linearised multistage kinetic model at different heating rates. The activation energy of reactions varied between 24.98 and 124.94 kJ/mol, indicating a surface-controlled reaction exhibiting high activation energy during the initial stages and a diffusion and mass transfer control showing lower activation energy at the final stages. The corresponding frequency factors were in the range of 3.34 × 1013-5.68 × 101 mg-1/min for different pyrolysis stages. The evolution of the functional groups decreased with an increase in the heating rate.

8.
Materials (Basel) ; 16(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37512259

RESUMO

Alloys of magnesium, zinc or iron that do not contain toxic elements are attractive as construction material for biodegradable implants, i.e., the type of implants that harmlessly dissolve away within the human body after they have completed their intended task. The synergistic influence of mechanical stress and corrosive human body fluid can cause sudden and catastrophic fracture of bioimplants due to phenomena such as stress corrosion cracking (SCC) and corrosion fatigue (CF). To date, SCC and CF of implants based on Zn have scarcely been investigated. This article is an overview of the challenges, research needs and way forward in understanding human body-fluid-assisted fractures (i.e., SCC and CF) of Zn alloys in human body fluid.

9.
Materials (Basel) ; 16(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37445014

RESUMO

Magnesium (Mg) alloys are a very attractive material of construction for biodegradable temporary implants. However, Mg alloys suffer unacceptably rapid corrosion rates in aqueous environments, including physiological fluid, that may cause premature mechanical failure of the implant. This necessitates a biodegradable surface barrier coating that should delay the corrosion of the implant until the fractured/damaged bone has healed. This review takes a brief account of the merits and demerits of various existing coating methodologies for the mitigation of Mg alloy corrosion. Since among the different coating approaches investigated, no single coating recipe seems to address the degradation control and functionality entirely, this review argues the need for polymer-based and biodegradable composite coatings.

10.
Small ; : e2302498, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37309278

RESUMO

Graphene coatings developed by chemical vapor deposition (CVD) that possess extraordinary/unique characteristics as barrier against aggressive environment can improve the corrosion resistance of Ni and Cu by up to two orders of magnitude. However, because of some compelling technical reasons, it has thus far been a nontrivial challenge to develop graphene coatings on the most commonly used engineering alloy, mild steel (MS). To circumvent the challenge simply by first electroplating MS with a Ni layer is attempted, and then developing CVD graphene over the Ni layer. However, this approach proved too simplistic and does not work. This necessitated an innovative surface modification of MS (based on basic metallurgical principles) that enabled successful CVD of graphene coating on MS. The graphene coating thus developed is demonstrated to improve the corrosion resistance of mild steel by two orders of magnitude in an aggressive chloride solution, through electrochemical testing. This improvement was not only sustained for the entire test duration of >1000 h; but there is a clear trend for the resistance to be possibly everlasting. The optimized surface modification that enabled development of CVD graphene coating on mild steel is generic in nature, and it should enable graphene coating on other alloy systems, which would otherwise not be possible.

11.
Materials (Basel) ; 16(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36676253

RESUMO

The steel making processes involves extreme and harsh operating conditions; hence, the production hardware is exposed to degradation mechanisms under high temperature oxidation, erosion, wear, impact, and corrosive environments. These adverse factors affect the product quality and efficiency of the steel making industry, which contributes to production downtime and maintenance costs. Thermal spray technologies that circumvent surface degradation mechanisms are also attractive for their environmental safety, effectiveness and ease of use. The need of thermal spray coatings and advancement in terms of materials and spray processes are reviewed in this article. Application and development of thermal spray coatings for steel making hardware from the molten metal processing stages such as electric arc and basic oxygen furnaces, through to continuous casting, annealing, and the galvanizing line; to the final shaping process such as cold and hot rolling of the steel strips are highlighted. Specifically, thermal spray feedstock materials and processes that have potential to replace hazardous hard chrome plating are discussed. It is projected that novel coating solutions will be incorporated as awareness and acceptance of thermal spray technology grows in the steel making sectors, which will improve the productivity of the industry.

12.
Biomed Mater ; 18(1)2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36395511

RESUMO

The biodegradation rate of Mg alloy medical devices, such as screws and plates for temporary bone fracture fixation or coronary angioplasty stents, is an increasingly important area of study.In vitromodels of the corrosion behavior of these devices use revised simulated body fluid (m-SBF) based on a healthy individual's blood chemistry. Therefore, model outputs have limited application to patients with altered blood plasma glucose or protein concentrations. This work studies the biodegradation behavior of Mg alloy WE43 in m-SBF modified with varying concentrations of glucose and bovine serum albumin (BSA) to (1) mimic a range of disease states and (2) determine the contributions of each biomolecule to corrosion. Measurements include the Mg ion release rate, electrolyte pH, the extent of hydrogen evolution (as a proxy for corrosion rate), surface morphology, and corrosion product composition and effects. BSA (0.1 g l-1) suppresses the rate of hydrogen evolution (about 30%) after 24 h and-to a lesser degree-Mg2+release in both the presence and absence of glucose. This effect gets more pronounced with time, possibly due to BSA adsorption on the Mg surface. Electrochemical studies confirm that adding glucose (2 g l-1) to the solution containing BSA (0.1 g l-1) caused a decrease in corrosion resistance (by around 40%), and concomitant increase in the hydrogen evolution rate (from 10.32 to 11.04 mg cm-2d-1) to levels far beyond the tolerance limits of live tissues.


Assuntos
Líquidos Corporais , Albumina Sérica , Humanos , Glucose , Ligas , Soroalbumina Bovina , Hidrogênio
13.
Materials (Basel) ; 15(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36363403

RESUMO

Mild steel continues to be the most extensively used construction material in several industries and constructions. However, corrosion of mild steel in aggressive environments is a major concern. Under the tremendously increasing demand for improving the coatings strategies because of the environmental concerns due to some of the traditional coatings, silane pre-treatments have been emerging as one of the effective solutions, among other strategies. Different approaches, such as adding particles of metal oxide (such as SiO2, ZrO2, Al2O3, TiO2 and CeO2), incorporating plant extracts and impregnating 2D materials into the coatings, have been employed for durable corrosion resistance, including for mitigating enhanced corrosion due to the presence of bacteria. This review discusses the critical mechanistic features of silane coatings such as the role of hydrolysis and condensation in the bonding of silanes with metal surfaces. The factors that influence the performance of the silane coatings for corrosion resistance of mild steel are discussed. In particular, this review provides insight into silane coatings for mitigating microbiologically influenced corrosion (MIC) of mild steel.

14.
Materials (Basel) ; 15(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35888432

RESUMO

The consequence of exposure to the dual environment of seawater sea sand concrete (SWSSC) on the inner surface and seawater (SW) on the outer surface on the durability of fibre reinforced plastic (FRP) confining tubes has received very limited research attention. The durability of FRPs fabricated with different fibre types was investigated for the application of SWSSC filled tubes and SWSSC-filled double-skin tubes exposed to the external environment of SW. The colour and shininess of carbon-fibre-reinforced polymer (CFRP) surfaces generally stayed unchanged even after 6 months of exposure to the dual environment, whereas basalt-fibre-reinforced polymer (BFRP) and glass-fibre-reinforced polymer (GFRP) tubes suffered degradation. The degradation led to a ~20-30% increase in pH; however, the pH increase in the external SW was more pronounced when the internal solution was SWSSC. The extent of degradation was greater in BFRP that in GFRP. The investigation also included a specialised investigation of the degradation at the fibre-matrix interface by fracturing specimens in liquid nitrogen.

15.
Molecules ; 26(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34771070

RESUMO

Coating of an organo-silane (Bis-1,2-(TriethoxySilyl)Ethane (BTSE)) has been observed to improve the corrosion resistance of magnesium alloy AZ91D. Three different types of surface preparations have been employed before condensing the silane coating on to the substrate. Corrosion resistance was investigated using electrochemical impedance spectroscopy (EIS). A specific alkali treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the coated alloy, which has been attributed to the ability of the treatment in facilitating the condensation of a relatively compact siloxane film.

16.
Nanotechnol Sci Appl ; 14: 197-220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815666

RESUMO

Graphene and graphene oxide have become the base of many advanced biosensors due to their exceptional characteristics. However, lack of some properties, such as inertness of graphene in organic solutions and non-electrical conductivity of graphene oxide, are their drawbacks in sensing applications. To compensate for these shortcomings, various methods of modifications have been developed to provide the appropriate properties required for biosensing. Efficient modification of graphene and graphene oxide facilitates the interaction of biomolecules with their surface, and the ultimate bioconjugate can be employed as the main sensing part of the biosensors. Graphene nanomaterials as transducers increase the signal response in various sensing applications. Their large surface area and perfect biocompatibility with lots of biomolecules provide the prerequisite of a stable biosensor, which is the immobilization of bioreceptor on transducer. Biosensor development has paramount importance in the field of environmental monitoring, security, defense, food safety standards, clinical sector, marine sector, biomedicine, and drug discovery. Biosensor applications are also prevalent in the plant biology sector to find the missing links required in the metabolic process. In this review, the importance of oxygen functional groups in functionalizing the graphene and graphene oxide and different types of functionalization will be explained. Moreover, immobilization of biomolecules (such as protein, peptide, DNA, aptamer) on graphene and graphene oxide and at the end, the application of these biomaterials in biosensors with different transducing mechanisms will be discussed.

17.
Materials (Basel) ; 14(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34640017

RESUMO

Stress corrosion cracking (SCC) is a vexing problem for load-bearing equipment operating in a corrosive environment in various industries, such as aerospace, chemical and mineral processing, civil structures, bioimplants, energy generation etc. For safe operation, effective maintenance and life prediction of such equipment, reliable design data on SCC (such as threshold stress intensity for SCC, i.e., KISCC) are invaluable. Generating reliable KISCC data invariably requires a large number of tests. Traditional techniques can be prohibitively expensive. This article reviews the determination of KISCC using the circumferential notch tensile (CNT) technique, the validation of the technique and its application to a few industrially relevant scenarios. The CNT technique is a relatively recent and considerably inexpensive approach for the determination of KISCC when compared to traditional techniques, viz., double-cantilever beam (DCB) and compact tension (CT) that may be fraught with prohibitive complexities. As established through this article, the CNT technique circumvents some critical limitations of the traditional techniques.

18.
Materials (Basel) ; 14(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34640111

RESUMO

Seawater and sea sand concrete (SWSSC) is an environmentally friendly alternative to ordinary Portland cement concrete for civil construction. However, the detrimental effect of high chloride content of SWSSC on the corrosion resistance of steel reinforcement is a concern. This study undertook the electrochemical corrosion behaviour and surface characterizations of a mild steel and two stainless steels (AISI type 304 and 316) in various simulated concrete environments, including the alkaline + chloride environment (i.e., SWSSC). Open circuit potential (OCP), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were employed. Though chloride is detrimental to the corrosion resistance of mild steels, a simultaneous presence of high alkalinity in SWSSC negate the detrimental effect of chloride. In the case of stainless steels, a high level of alkalinity is found to be detrimental, whereas chloride seems to have less detrimental effect on their corrosion resistance.

19.
Materials (Basel) ; 14(16)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34442974

RESUMO

This paper summarises the findings of an investigation into the durability of cold spray repairs, also known as supersonic particle deposition or SPD repairs, to simulated corrosion damage in AA7075-T7351 aluminium alloy specimens. A feature of this paper is that it is the first to show how to perform the mandatory durability analysis of repaired corroded structures, where the corroded material is first removed by machining and then repaired using cold spray, in a fashion consistent with the requirements delineated in USAF Structures Bulletin EZ-19-01, MIL-STD-1530D, and the US Joint Services Structural Guidelines JSSG2006.

20.
ACS Omega ; 6(26): 16913-16923, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34250350

RESUMO

Quaternary ammonium compounds have been used as antibacterial materials. However, as they are hydrophilic and produce a positively charged surface, it is challenging to develop a durable antimicrobial coating of such compounds. The objective of this study is to investigate a two-step silane coating incorporated with quaternary ammonium silane for mitigation of microbiologically influenced corrosion (MIC) of mild steel in biotic solution (a marine environment with bacteria). The corrosion resistance was characterized by electrochemical impedance spectroscopy and potentiodynamic polarization tests. The intact silane coating and that pre-exposed to the biotic solution were characterized by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). The most probable method (MPN) was used to quantify the active microorganisms attached to the uncoated and silane-coated surfaces. Electrochemical results reveal that the coating thus developed improved the corrosion resistance of steel in the biotic solution. The MPN, FTIR, and scanning electron microscopy suggest a significant decrease in the number of active cells that get attached to the coated surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA