Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem A Mater ; 10(38): 20580-20592, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36324859

RESUMO

Porous boron nitride (BN) displays promising properties for interfacial and bulk processes, e.g. molecular separation and storage, or (photo)catalysis. To maximise porous BN's potential in such applications, tuning and controlling its chemical and structural features is key. Functionalisation of porous BN with metal nanoparticle represents one possible route, albeit a hardly explored one. Metal-organic frameworks (MOFs) have been widely used as precursors to synthesise metal functionalised porous carbon-based materials, yet MOF-derived metal functionalised inorganic porous materials remain unexplored. Here, we hypothesise that MOFs could also serve as a platform to produce metal-functionalised porous BN. We have used a Cu-containing MOF, i.e. Cu/ZIF-8, as a precursor and successfully obtained porous BN functionalised with Cu nanoparticles (i.e. Cu/BN). While we have shown control of the Cu content, we have not yet demonstrated it for the nanoparticle size. The functionalisation has led to improved light harvesting and enhanced electron-hole separation, which have had a direct positive impact on the CO2 photoreduction activity (production formation rate 1.5 times higher than pristine BN and 12.5 times higher than g-C3N4). In addition, we have found that the metal in the MOF precursor impacts porous BN's purity. Unlike Cu/ZIF-8, a Co-containing ZIF-8 precursor led to porous C-BN (i.e. BN with a large amount of C in the structure). Overall, given the diversity of metals in MOFs, one could envision our approach as a method to produce a library of different metal functionalised porous BN samples.

2.
Inorg Chem ; 61(12): 4919-4937, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35285628

RESUMO

Bis(pyrazol-1-yl)- and bis(3,5-dimethylpyrazol-1-yl)-acetates were conjugated with the 2-hydroxyethylester and 2-aminoethylamide derivatives of the antineoplastic drug lonidamine to prepare Cu(I) and Cu(II) complexes that might act through synergistic mechanisms of action due to the presence of lonidamine and copper in the same chemical entity. Synchrotron radiation-based complementary techniques [X-ray photorlectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS)] were used to characterize the electronic and molecular structures of the complexes and the local structure around the copper ion (XAFS) in selected complexes. All complexes showed significant antitumor activity, proving to be more effective than the reference drug cisplatin in a panel of human tumor cell lines, and were able to overcome oxaliplatin and multidrug resistance. Noticeably, these Cu complexes appeared much more effective than cisplatin against 3D spheroids of pancreatic PSN-1 cancer cells; among these, PPh3-containing Cu(I) complex 15 appeared to be the most promising derivative. Mechanistic studies revealed that 15 induced cancer cell death by means of an apoptosis-alternative cell death.


Assuntos
Antineoplásicos , Complexos de Coordenação , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Cobre/química , Cobre/farmacologia , Cristalografia por Raios X , Humanos , Indazóis , Ligantes , Estrutura Molecular
3.
Sci Rep ; 9(1): 18857, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827165

RESUMO

Combining micro-X-ray absorption spectroscopy (µXAS) and micro-X-ray fluorescence spectroscopy (µXRF) is a promising approach for the investigation of complex multi-phase systems. In this work, we have employed this approach to investigate natural sphalerite, the most common form of Zinc Sulfide. Spatially resolved elemental distribution maps of common 3d metal atoms (Zn, Cu, Ni, Co, and Fe) are superimposed with chemical speciation and structural parameter maps in order to understand the sphaleriteore-formation process and metamorphosis. Chemical speciation and structural parameters have been obtained by analyzing the µXAS spectra collected in several representative points of the sample, after µXRF mapping. In the present case, this X-ray based approach has permitted to determine the spatial distribution of the Zn species in sphalerite. The presence of two main zincite and smithsonite inclusions has been established, with the latter located close to copper impurity center. Since copper is known to remarkably reduce the corrosion resistance of zinc, resulting in the formation of carbonate as the corrosion product, this implies a possible role of Cu in the growth of the carbonate inclusions. The results obtained highlight the efficiency of this method in univocally identifying the spatial distribution of phases in complex systems, thanks to the simultaneous access to complementary information.

4.
J Phys Chem Lett ; 10(16): 4571-4576, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31339731

RESUMO

We report the ligand-exchange-induced transformation from an icosahedral Au25(SR)18 cluster (where SR = 2-phenylethanethiol (PET)) to a bitetrahedral Au22(SR)4(SR')14 cluster (where SR' = 4-tert-butylbenzenethiol (TBBT)). This partial exchange of the ligands was achieved by controlling the concentration of the incoming TBBT ligand. Being a bulky and aromatic ligand, TBBT can efficiently distort the atomic structure of the Au25PET18 cluster, resulting in Au22(PET)4(TBBT)14, which is highly stable and considered to be an intermediate with a bitetrahedral structure. Time-dependent mass spectrometry and optical spectroscopy revealed the dissociation of the parent cluster and gave a deep insight on the ligand-exchange mechanism. Theoretical calculations and extended X-ray absorption fine structure studies confirm the formation of the Au22 structure. Identifying the atomic structure of the intermediate species opens a new avenue to study the transformation of one cluster to another.

5.
J Phys Chem Lett ; 10(12): 3359-3368, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31141374

RESUMO

Lithium-rich transition-metal-oxide cathodes are among the most promising materials for next generation lithium-ion-batteries because they operate at high voltages and deliver high capacities. However, their cycle-life remains limited, and individual roles of the transition-metals are still not fully understood. Using bulk-sensitive X-ray absorption and emission spectroscopy on Li[Li0.2Ni0.16Mn0.56Co0.08]O2, we inspect the behavior of Mn, generally considered inert upon the electrochemical process. During the first charge Mn appears to be redox-active showing a partial transformation from high-spin Mn4+ to Mn3+ in both high and low spin configurations, where the latter is expected to favor reversible cycling. The Mn redox-state with cycling continues changing in opposition to the expected charge compensation and is correlated with Ni oxidation/reduction, also spatially. The findings suggest that strain induced on the Mn-O sublattice by Ni oxidation triggers Mn reduction. These results unravel the Mn role in controlling the electrochemistry of Li-rich cathodes.

6.
Materials (Basel) ; 9(12)2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28774148

RESUMO

The synthesis, characterization and assessment of the antibacterial properties of hydrophilic silver nanoparticles (AgNPs) were investigated with the aim to probe their suitability for innovative applications in the field of nanobiotechnology. First, silver nanoparticles were synthetized and functionalized with two capping agents, namely 3-mercapto-1-propansulfonate (3MPS) and 1-ß-thio-d-glucose (TG). The investigation of the structural and electronic properties of the nano-systems was carried out by means of X-ray Photoelectron Spectroscopy (XPS) and X-ray Absorption Spectroscopy (XAS). XPS data provided information about the system stability and the interactions between the metallic surface and the organic ligands. In addition, XPS data allowed us to achieve a deep understanding of the influence of the thiols stoichiometric ratio on the electronic properties and stability of AgNPs. In order to shed light on the structural and electronic local properties at Ag atoms sites, XAS at Ag K-Edge was successfully applied; furthermore, the combination of Dynamic Light Scattering (DLS) and XAS results allowed determining AgNPs sizes, ranging between 3 and 13 nm. Finally, preliminary studies on the antibacterial properties of AgNPs showed promising results on four of six multidrug-resistant bacteria belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.).

7.
J Synchrotron Radiat ; 22(5): 1233-41, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26289275

RESUMO

XANES- and EXAFS-based analysis of the Ayurvedic Hg-based nano-drug Rasasindura has been performed to seek evidence of its non-toxicity. Rasasindura is determined to be composed of single-phase α-HgS nanoparticles (size ∼24 nm), free of Hg(0) or organic molecules; its structure is determined to be robust (<3% defects). The non-existence of Hg(0) implies the absence of Hg-based toxicity and establishes that chemical form, rather than content of heavy metals, is the correct parameter for evaluating the toxicity in these drugs. The stable α-HgS form (strong Hg-S covalent bond and robust particle character) ensures the integrity of the drug during delivery and prevention of its reduction to Hg(0) within the human body. Further, these comparative studies establish that structural parameters (size dispersion, coordination configuration) are better controlled in Rasasindura. This places the Ayurvedic synthesis method on par with contemporary techniques of nanoparticle synthesis.


Assuntos
Compostos de Mercúrio/análise , Compostos de Mercúrio/química , Mercúrio/análise , Espectroscopia por Absorção de Raios X/métodos , Disponibilidade Biológica , Cristalização , Composição de Medicamentos , Ayurveda , Compostos de Mercúrio/síntese química , Compostos de Mercúrio/toxicidade , Nanopartículas , Tamanho da Partícula , Pós , Solubilidade
8.
J Synchrotron Radiat ; 20(Pt 1): 137-44, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23254666

RESUMO

In this work nanoclusters formed in a Pt/Ni/C multi-trilayer by the ion-irradiated method of synthesis are characterized. In particular, an attempt to understand the role of interfaces in the synthesis is made. With this objective, ion-irradiation-induced structural changes in a Pt/Ni/C multi-trilayer using X-ray absorption spectroscopy (at the Ni K-edge) in conjunction with the X-ray standing-wave technique are investigated. The XANES analysis identifies chemical binding at pristine Ni/C and Ni/Pt interfaces, in contrast with physical adsorption at the Pt/C interface. The chemical nature of the interfaces determines their relative stability with respect to irradiation and controls the extent of metallic diffusion. The most interesting structural change, upon irradiation, is the disruption of the Pt/C interface and subsequent migration of Pt atoms towards pre-diffused Ni atoms within the C layer, leading to the formation of Ni-centered Ni-Pt bimetallic nanoclusters (with Ni:Pt = 60:40). These clusters are highly disordered beyond their nearest neighbor and find wide-scale applications as, for example, magnetic devices etc. The implications of these findings on the design goals are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA