Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Chem Commun (Camb) ; 59(87): 13054-13057, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37846773

RESUMO

In a metal-catalyzed oxidative addition, an oriented external electric field (EEF) catalyzes the reaction along one direction and inhibits it when applied in the opposite direction. Beyond a threshold value, the inhibitory direction becomes catalyzing by swapping the metal-to-ligand charge transfer (MLCT) to ligand-to-metal charge-transfer (LMCT) or vice versa. The change in direction of the charge-transfer mechanism triggers the inversion of the dipole moment along the reaction axis, that results in the resurgence of catalysis. The charge-transfer mechanism in metal-catalyzed oxidative addition is tunable by EEF.

2.
Angew Chem Int Ed Engl ; 62(38): e202307579, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37530131

RESUMO

Oriented external electric fields (EEFs) act as catalysts that can induce selectivity in chemical reactions. The responses of the Diels-Alder (DA) reaction between butadiene and ethylene (BDE-DA) as well as cyclopentadiene and ethylene (CPDE-DA) towards EEF stimuli are investigated here using density functional theory (B3LYP) calculations. EEF is a vector that catalyzes the reaction in one direction while inhibiting it in the opposite direction. Here we report that the inhibitive direction becomes rate-enhancing after some increase in the EEF. The EEF value that brings about the maximum possible inhibition for the reaction is defined as the electrostatic resistance point (ERP). The possibility of both normal and inverse electron-demand DA reactions causes catalytic activity in both directions of the EEF starting at a unique ERP value. The C5 substituents of cyclopentadiene control the ERP values depending upon the resistance power that the functional group provides against the EEF. The endo and exo diastereomeric transition states of the DA reaction have distinct ERP values and the difference (ΔERP) provides the through-space electrostatic contribution to the stereoselectivity on a relative scale. Thus, the ERP values can be used as a gauge for the electrostatic interactions between substituent groups and external stimuli.

3.
Phys Chem Chem Phys ; 25(19): 13772-13783, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37159254

RESUMO

The non-heme Fe(II) and 2-oxoglutarate (2OG) dependent ethylene-forming enzyme (EFE) catalyzes both ethylene generation and L-Arg hydroxylation. Despite experimental and computational progress in understanding the mechanism of EFE, no EFE variant has been optimized for ethylene production while simultaneously reducing the L-Arg hydroxylation activity. In this study, we show that the two L-Arg binding conformations, associated with different reactivity preferences in EFE, lead to differences in the intrinsic electric field (IntEF) of EFE. Importantly, we suggest that applying an external electric field (ExtEF) along the Fe-O bond in the EFE·Fe(III)·OO-˙·2OG·L-Arg complex can switch the EFE reactivity between L-Arg hydroxylation and ethylene generation. Furthermore, we explored how applying an ExtEF alters the geometry, electronic structure of the key reaction intermediates, and the individual energy contributions of second coordination sphere (SCS) residues through combined quantum mechanics/molecular mechanics (QM/MM) calculations. Experimentally generated variant forms of EFE with alanine substituted for SCS residues responsible for stabilizing the key intermediates in the two reactions of EFE led to changes in enzyme activity, thus demonstrating the key role of these residues. Overall, the results of applying an ExtEF indicate that making the IntEF of EFE less negative and stabilizing the off-line binding of 2OG is predicted to increase ethylene generation while reducing L-Arg hydroxylation.


Assuntos
Arginina , Compostos Férricos , Hidroxilação , Arginina/química , Etilenos/química
4.
Chemistry ; 27(46): 11750, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34191375

RESUMO

Invited for the cover of this issue are Christo Z. Christov and co-workers at Michigan Technological University and University of Oxford. The image depicts the effects of applying an external electric field on the demethylation of dimethylated arginine substrate by a non-heme Fe center Histone N-methyl arginine demethylase. Read the full text of the article at 10.1002/chem.202101174.

5.
Chemistry ; 27(46): 11827-11836, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-33989435

RESUMO

Arginine methylation is an important mechanism of epigenetic regulation. Some Fe(II) and 2-oxoglutarate dependent Jumonji-C (JmjC) Nϵ-methyl lysine histone demethylases also have N-methyl arginine demethylase activity. We report combined molecular dynamic (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) studies on the mechanism of N-methyl arginine demethylation by human KDM4E and compare the results with those reported for N-methyl lysine demethylation by KDM4A. At the KDM4E active site, Glu191, Asn291, and Ser197 form a conserved scaffold that restricts substrate dynamics; substrate binding is also mediated by an out of active site hydrogen-bond between the substrate Ser1 and Tyr178. The calculations imply that in either C-H or N-H potential bond cleaving pathways for hydrogen atom transfer (HAT) during N-methyl arginine demethylation, electron transfer occurs via a σ-channel; the transition state for the N-H pathway is ∼10 kcal/mol higher than for the C-H pathway due to the higher bond dissociation energy of the N-H bond. The results of applying external electric fields (EEFs) reveal EEFs with positive field strengths parallel to the Fe=O bond have a significant barrier-lowering effect on the C-H pathway, by contrast, such EEFs inhibit the N-H activation rate. The overall results imply that KDM4 catalyzed N-methyl arginine demethylation and N-methyl lysine demethylation occur via similar C-H abstraction and rebound mechanisms leading to methyl group hydroxylation, though there are differences in the interactions leading to productive binding of intermediates.


Assuntos
Histonas , Histona Desmetilases com o Domínio Jumonji , Arginina/metabolismo , Catálise , Desmetilação , Epigênese Genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo
6.
ACS Cent Sci ; 6(5): 795-814, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32490196

RESUMO

AlkB and its human homologue AlkBH2 are Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases that repair alkylated DNA bases occurring as a consequence of reactions with mutagenic agents. We used molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate how structural dynamics influences the selectivity and mechanisms of the AlkB- and AlkBH2-catalyzed demethylation of 3-methylcytosine (m3C) in single (ssDNA) and double (dsDNA) stranded DNA. Dynamics studies reveal the importance of the flexibility in both the protein and DNA components in determining the preferences of AlkB for ssDNA and of AlkBH2 for dsDNA. Correlated motions, including of a hydrophobic ß-hairpin, are involved in substrate binding in AlkBH2-dsDNA. The calculations reveal that 2OG rearrangement prior to binding of dioxygen to the active site Fe is preferred over a ferryl rearrangement to form a catalytically productive Fe(IV)=O intermediate. Hydrogen atom transfer proceeds via a σ-channel in AlkBH2-dsDNA and AlkB-dsDNA; in AlkB-ssDNA, there is a competition between σ- and π-channels, implying that the nature of the complexed DNA has potential to alter molecular orbital interactions during the substrate oxidation. Our results reveal the importance of the overall protein-DNA complex in determining selectivity and how the nature of the substrate impacts the mechanism.

7.
Angew Chem Int Ed Engl ; 59(20): 7915-7920, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32097514

RESUMO

This contribution follows the recent remarkable catalysis observed by Groves et al. in hydrogen-abstraction reactions by a) an oxoferryl porphyrin radical-cation complex [Por⋅+ FeIV (O)Lax ] and b) a hydroxoiron porphyrazine ferric complex [PyPzFeIII (OH)Lax ], both of which involve positively charged substituents on the outer circumference of the respective macrocyclic ligands. These charge-coronated complexes are analogues of the biologically important Compound I (Cpd I) and synthetic hydroxoferric species, respectively. We demonstrate that the observed enhancement of the H-abstraction catalysis for these systems is a purely electrostatic effect, elicited by the local charges embedded on the peripheries of the respective macrocyclic ligands. Our findings provide new insights into how electrostatics can be employed to tune the catalytic activity of metalloenzymes and can thus contribute to the future design of new and highly efficient hydrogen-abstraction catalysts.

8.
ACS Catal ; 10(2): 1195-1209, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31976154

RESUMO

PHF8 (KDM7B) is a human non-heme 2-oxoglutarate (2OG) JmjC domain oxygenase that catalyzes the demethylation of the di/mono-Nε-methylated K9 residue of histone H3. Altered PHF8 activity is linked to genetic diseases and cancer; thus, it is an interesting target for epigenetic modulation. We describe the use of combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations to explore the mechanism of PHF8, including dioxygen activation, 2OG binding modes, and substrate demethylation steps. A PHF8 crystal structure manifests the 2OG C-1 carboxylate bound to iron in a nonproductive orientation, i.e., trans to His247. A ferryl-oxo intermediate formed by activating dioxygen bound to the vacant site in this complex would be nonproductive, i.e., "off-line" with respect to reaction with Nε-methylated K9. We show rearrangement of the "off-line" ferryl-oxo intermediate to a productive "in-line" geometry via a solvent exchange reaction (called "ferryl-flip") is energetically unfavorable. The calculations imply that movement of the 2OG C-1 carboxylate prior to dioxygen binding at a five-coordination stage in catalysis proceeds with a low barrier, suggesting that two possible 2OG C-1 carboxylate geometries can coexist at room temperature. We explored alternative mechanisms for hydrogen atom transfer and show that second sphere interactions orient the Nε-methylated lysine in a conformation where hydrogen abstraction from a methyl C-H bond is energetically more favorable than hydrogen abstraction from the N-H bond of the protonated Nε-methyl group. Using multiple HAT reaction path calculations, we demonstrate the crucial role of conformational flexibility in effective hydrogen transfer. Subsequent hydroxylation occurs through a rebound mechanism, which is energetically preferred compared to desaturation, due to second sphere interactions. The overall mechanistic insights reveal the crucial role of iron-center rearrangement, second sphere interactions, and conformational flexibility in PHF8 catalysis and provide knowledge useful for the design of mechanism-based PHF8 inhibitors.

9.
Chem Sci ; 11(36): 9950-9961, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34094257

RESUMO

The N ε-methyl lysine status of histones is important in the regulation of eukaryotic transcription. The Fe(ii) and 2-oxoglutarate (2OG) -dependent JmjC domain enzymes are the largest family of histone N ε-methyl lysine demethylases (KDMs). The human KDM4 subfamily of JmjC KDMs is linked with multiple cancers and some of its members are medicinal chemistry targets. We describe the use of combined molecular dynamics (MD) and Quantum Mechanical/Molecular Mechanical (QM/MM) methods to study the mechanism of KDM4A, which catalyzes demethylation of both tri- and di-methylated forms of histone H3 at K9 and K36. The results show that the oxygen activation at the active site of KDM4A is optimized towards the generation of the reactive Fe(iv)-oxo intermediate. Factors including the substrate binding mode, correlated motions of the protein and histone substrates, and molecular orbital control synergistically contribute to the reactivity of the Fe(iv)-oxo intermediate. In silico substitutions were performed to investigate the roles of residues (Lys241, Tyr177, and Asn290) in substrate orientation. The Lys241Ala substitution abolishes activity due to altered substrate orientation consistent with reported experimental studies. Calculations with a macrocyclic peptide substrate analogue reveal that induced conformational changes/correlated motions in KDM4A are sequence-specific in a manner that influences substrate binding affinity. Second sphere residues, such as Ser288 and Thr289, may contribute to KDM4A catalysis by correlated motions with active site residues. Residues that stabilize key intermediates, and which are predicted to be involved in correlated motions with other residues in the second sphere and beyond, are shown to be different in KDM4A compared to those in another JmjC KDM (PHF8), which acts on H3K9 di- and mono-methylated forms, suggesting that allosteric type inhibition is of interest from the perspective of developing selective JmjC KDM inhibitors.

10.
Adv Protein Chem Struct Biol ; 117: 113-125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31564306

RESUMO

The demethylation of lysine residues of histone proteins is a key epigenetic mechanism in cells. The enzymes that catalyze these processes are called histone demethylases (KDMs). The largest family of KDMs is the Jumonji C (JmjC) domain-containing enzymes; these includes KDM2-7 subfamily of enzymes. The JmjC proteins are Fe(II) and 2-Oxoglutarate (2OG) - dependent dioxygenases that couple substrate oxidation to decarboxylation of 2OG to form succinate and CO2. The KDM7 subfamily of enzymes - PHF8 (KDM7B) and KIAA1718 (KDM7A) are human JmjC 2OG-dependent Nε-methyl lysine demethylases and are involved in demethylation of lysine residues in histones such as H3K27me2/1, H3K9me2/1 and H4K20me1. These enzymes are involved in multiple pathologic processes, including cancers and mental retardation. In this chapter, we present the current state of the art in the structural, biochemical and computational studies of KDM7 enzymes.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/química , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
11.
Chemistry ; 25(21): 5422-5426, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30817054

RESUMO

The human KDM7 subfamily histone H3 Nϵ-methyl lysine demethylases PHF8 (KDM7B) and KIAA1718 (KDM7A) have different substrate selectivities and are linked to genetic diseases and cancer. We describe experimentally based computational studies revealing that flexibility of the region linking the PHD finger and JmjC domains in PHF8 and KIAA1718 regulates interdomain interactions, the nature of correlated motions, and ultimately H3 binding and demethylation site selectivity. F279S an X-linked mental retardation mutation in PHF8 is involved in correlated motions with the iron ligands and second sphere residues. The calculations reveal key roles of a flexible protein environment in productive formation of enzyme-substrate complexes and suggest targeting the flexible KDM7 linker region is of interest from a medicinal chemistry perspective.


Assuntos
Histona Desmetilases/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Histona Desmetilases/química , Histonas/química , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Ligantes , Metilação , Simulação de Dinâmica Molecular , Análise de Componente Principal , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , Teoria Quântica , Especificidade por Substrato , Fatores de Transcrição/química
12.
Org Biomol Chem ; 17(8): 2223-2231, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30720838

RESUMO

N-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(ii) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure-function relationships of AlkB and FTO, e.g. why 1-methyladenine is a better substrate for AlkB than 6-methyladenine. Simulations show that the flexibility of the double stranded DNA substrate in AlkB influences correlated motions, including between the core jelly-roll fold and an active site loop involved in substrate binding. The FTO N- and C-terminal domains move in respect to one another in a manner likely important for substrate binding. Substitutions, including clinically observed ones, influencing catalysis contribute to the network of correlated motions in AlkB and FTO. Overall, the calculations highlight the importance of the overall protein environment and its flexibility to the geometry of the reactant complexes.


Assuntos
Enzimas AlkB/química , Dioxigenase FTO Dependente de alfa-Cetoglutarato/química , Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Adenina/análogos & derivados , Adenina/metabolismo , Enzimas AlkB/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Metilação de DNA , DNA de Cadeia Simples/metabolismo , Escherichia coli K12/química , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
13.
J Am Chem Soc ; 140(41): 13350-13359, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30232877

RESUMO

The manuscript studies the enantioselectivity and stereoselectivity of Diels-Alder (DA) cycloadditions between cyclopentadiene (CPD) and a variety of dienophiles (ranging from halo-ethenes to cyano-ethenes), under oriented external electric fields (OEEFs). Applying OEEFs oriented in the X/ Y directions, perpendicular to the reaction axis ( Z), will achieve complete isomeric and enantiomeric discrimination of the products. Unlike the Z-OEEF, which involves charge-transfer from the diene to the dienophile, and thereby brings about catalysis due to increased intramolecular bonding, an OEEF along X, aligned parallel to the C1-C4 atoms of CPD, will lead to R/ S enantiomeric discrimination by means of intramolecular-bond polarization. A Y field will discriminate endo/exo stereoisomers in a similar mechanism. The XY field-combination will resolve both R/S and endo/exo. The resolution is complete and can be achieved at will by flipping the direction of the field along the X and Y axes. The preconditions for achieving the enantiomeric and isomeric discrimination are discussed and require fixing of the CPD onto a surface. In so doing the chiral discrimination is achieved by dipole-moment selection rules, such that the field filters out one of the enantiomers, which is highly raised in energy by dipole selection. The dependence of the discrimination on the polarity of the dienophiles leads to a predictive trend.

14.
Chem Soc Rev ; 47(14): 5125-5145, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-29979456

RESUMO

This is a tutorial on use of external-electric-fields (EEFs) as effectors of chemical change. The tutorial instructs readers how to conceptualize and design electric-field effects on bonds, structures, and reactions. Most effects can be comprehended as the field-induced stabilization of ionic structures. Thus, orienting the field along the "bond axis" will facilitate bond breaking. Similarly, orienting the field along the "reaction axis", the direction in which "electron pairs transform" from reactants- to products-like, will catalyse the reaction. Flipping the field's orientation along the reaction-axis will cause inhibition. Orienting the field off-reaction-axis will control stereo-selectivity and remove forbidden-orbital mixing. Two-directional fields may control both reactivity and selectivity. Increasing the field strength for concerted reactions (e.g., Diels-Alder's) will cause mechanistic-switchover to stepwise mechanisms with ionic intermediates. Examples of bond breaking and control of reactivity/selectivity and mechanisms are presented and analysed from the "ionic perspective". The tutorial projects the unity of EEF effects, "giving insight and numbers".

15.
J Am Chem Soc ; 140(12): 4354-4362, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29512385

RESUMO

Oriented external electric fields (OEEFs) are potent effectors of chemical change and control. We show that the Menshutkin reaction, between substituted pyridines and methyl iodide, can be catalyzed/inhibited at will, by just flipping the orientation of the EEF ( F Z) along the "reaction axis" ( Z), N---C---I. A theoretical analysis shows that catalysis/inhibition obey the Bell-Evans-Polanyi principle. Significant catalysis is predicted also for EEFs oriented off the reaction axis. Hence, the observation of catalysis can be scaled up and may not require orienting the reactants vis-à-vis the field. It is further predicted that EEFs can also catalyze the front-side nucleophilic displacement reaction, thus violating the Walden-inversion paradigm. Finally, we considered the impact of gold-thiolate linkers, used experimentally to deliver the EEF stimuli, on the Menshutkin reaction. A few linkers were tested and proved not to be innocent. In the presence of F Z, the linkers participate in the electronic reorganization of the molecular system. In so doing, these linkers induce local electric fields, which map the effects of the EEF and induce catalysis/inhibition at will, as in the pristine reaction. However, as the EEF becomes more negative than -0.1 V/Å, an excited charge transfer state (CTS), which involves one-electron transfer from the 5p lone pair of iodine to an antibonding orbital of the gold cluster, crosses below the closed-shell state of the Menshutkin reaction and causes a mechanistic crossover. This CTS catalyzes nucleophilic displacement of iodine radical from the CH3I•+ radical cation. The above predictions and others discussed in the text are testable.

16.
Nat Chem ; 8(12): 1091-1098, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27874869

RESUMO

Oriented external electric fields (OEEFs) as 'smart reagents' are no longer a theoretical dream. Here, we discuss the wide-ranging potential of using OEEFs to catalyse and control a variety of non-redox reactions and impart selectivity at will. An OEEF along the direction of electron reorganization (the so-called reaction axis) will catalyse nonpolar reactions by orders of magnitude, control regioselectivity and induce spin-state selectivity. Simply flipping the direction of the OEEF or orienting it off of the reaction axis, will control at will the endo/exo ratio in Diels-Alder reactions and steps in enzymatic cycles. This Perspective highlights these outcomes using theoretical results for hydrogen abstraction reactions, epoxidation of double bonds, C-C bond forming reactions, proton transfers and the cycle of the enzyme cytochrome P450, as well as recent experimental data. We postulate that, as experimental techniques mature, chemical syntheses may become an exercise in zapping oriented molecules with OEEFs.


Assuntos
Eletricidade , Indicadores e Reagentes/química , Catálise , Complexos de Coordenação/química , Reação de Cicloadição , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Elétrons , Ferro/química , Teoria Quântica , Estereoisomerismo
17.
J Am Chem Soc ; 138(21): 6786-97, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27059179

RESUMO

This work uses combined quantum mechanical/molecular mechanical and molecular dynamics simulations to investigate the mechanism and selectivity of H2O2-dependent hydroxylation of fatty acids by the P450SPα class of enzymes. H2O2 is found to serve as the surrogate oxidant for generating the principal oxidant, Compound I (Cpd I), in a mechanism that involves homolytic O-O bond cleavage followed by H-abstraction from the Fe-OH moiety. Our results rule out a substrate-assisted heterolytic cleavage of H2O2 en route to Cpd I. We show, however, that substrate binding stabilizes the resultant Fe-H2O2 complex, which is crucial for the formation of Cpd I in the homolytic pathway. A network of hydrogen bonds locks the HO· radical, formed by the O-O homolysis, thus directing it to exclusively abstract the hydrogen atom from Fe-OH, thereby forming Cpd I, while preventing the autoxoidative reaction, with the porphyrin ligand, and the substrate oxidation. The so formed Cpd I subsequently hydroxylates fatty acids at their α-position with S-enantioselectivity. These selectivity patterns are controlled by the active site: substrate's binding by Arg241 determines the α-regioselectivity, while the Pro242 residue locks the prochiral α-CH2, thereby leading to hydroxylation of the pro-S C-H bond. Our study of the mutant Pro242Ala sheds light on potential modifications of the enzyme's active site in order to modify reaction selectivity. Comparisons of P450SPα to P450BM3 and to P450BSß reveal that function has evolved in these related metalloenzymes by strategically placing very few residues in the active site.


Assuntos
Ácidos Graxos/química , Peróxido de Hidrogênio/química , Oxigenases de Função Mista/química , Simulação de Dinâmica Molecular , Teoria Quântica , Sítios de Ligação , Catálise , Biologia Computacional , Ligação de Hidrogênio , Hidroxilação , Estereoisomerismo
18.
J Am Chem Soc ; 137(2): 722-33, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25513834

RESUMO

This article addresses the intriguing hydrogen-abstraction (H-abstraction) and oxygen-transfer (O-transfer) reactivity of a series of nonheme [Fe(IV)(O)(TMC)(Lax)](z+) complexes, with a tetramethyl cyclam ligand and a variable axial ligand (Lax), toward three substrates: 1,4-cyclohexadiene, 9,10-dihydroanthracene, and triphenyl phosphine. Experimentally, O-transfer-reactivity follows the relative electrophilicity of the complexes, whereas the corresponding H-abstraction-reactivity generally increases as the axial ligand becomes a better electron donor, hence exhibiting an antielectrophilic trend. Our theoretical results show that the antielectrophilic trend in H-abstraction is affected by tunneling contributions. Room-temperature tunneling increases with increase of the electron donation power of the axial-ligand, and this reverses the natural electrophilic trend, as revealed through calculations without tunneling, and leads to the observed antielectrophilic trend. By contrast, O-transfer-reactivity, not being subject to tunneling, retains an electrophilic-dependent reactivity trend, as revealed experimentally and computationally. Tunneling-corrected kinetic-isotope effect (KIE) calculations matched the experimental KIE values only if all of the H-abstraction reactions proceeded on the quintet state (S = 2) surface. As such, the present results corroborate the initially predicted two-state reactivity (TSR) scenario for these reactions. The increase of tunneling with the electron-releasing power of the axial ligand, and the reversal of the "natural" reactivity pattern, support the "tunneling control" hypothesis (Schreiner et al., ref 19). Should these predictions be corroborated, the entire field of C-H bond activation in bioinorganic chemistry would lay open to reinvestigation.


Assuntos
Alcanos/química , Hidrogênio/química , Ferro/química , Oxigênio/química , Cinética , Modelos Moleculares , Conformação Molecular , Oxidantes , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA