Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2620, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297061

RESUMO

As the global demand for food increases, aquaculture plays a key role as the fastest growing animal protein sector. However, existing aquafeeds contain protein ingredients that are not sustainable under current production systems. We evaluated the use of microbial community-based single cell protein (SCP), produced from soybean processing wastewater, as a partial fishmeal protein substitute in juvenile Asian seabass (Lates calcarifer). A 24-day feeding trial was conducted with a control fishmeal diet and a 50% fishmeal replacement with microbial community-based SCP as an experimental group, in triplicate tanks containing 20 fish each. Both diets met the protein, essential amino acids (except for lysine), and fat requirements for juvenile Asian sea bass. The microbial composition of the SCP was dominated by the genera Acidipropionibacterium and Propioniciclava, which have potential as probiotics and producers of valuable metabolites. The growth performance in terms of percent weight gain, feed conversion ratio (FCR), specific growth rate (SGR), and survival were not significantly different between groups after 24 days. The experimental group had less variability in terms of weight gain and FCR than the control group. Overall, microbial community-based protein produced from soybean processing wastewater has potential as a value-added feed ingredient for sustainable aquaculture feeds.


Assuntos
Microbiota , Perciformes , Animais , Glycine max , Águas Residuárias , Ração Animal/análise , Peixes , Dieta , Aumento de Peso
2.
Sci Total Environ ; 873: 162241, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36804981

RESUMO

The use of food-processing wastewaters to produce microbial biomass-derived single cell protein (SCP) is a sustainable way to meet the global food demand. Microbial community-based approaches to SCP production have the potential benefits of lower costs and greater resource recovery compared to pure cultures, yet they have received scarce attention. Here, SCP production from soybean-processing wastewaters using their existent microbial communities was evaluated. Six sequencing batch reactors of 4.5-L working volume were operated at 30 °C for 34 d in cycles consisting of 3-h anaerobic and 9-h aerobic phases. Four reactors received no microbial inoculum and the remaining two were amended with 1.5 L of a mixed culture from a prior SCP production cycle. Reactors produced more SCP when fed with wastewaters of higher soluble total Kjeldahl nitrogen (sTKN) content. The protein yield in biomass ranged from 0.53 to 3.13 g protein/g sTKN, with a maximum protein content of 50 %. The average removal of soluble chemical oxygen demand (sCOD) and soluble total nitrogen (sTN) was 92 % and 73 %, respectively. Distinct microbial genera were enriched in all six bioreactors, with Azospirillum, Rhodobacter, Lactococcus, and Novosphingobium dominating. The study showed that constituents in soybean wastewater can be converted to SCP and demonstrated the effect of variable influent wastewater composition on SCP production.


Assuntos
Microbiota , Águas Residuárias , Eliminação de Resíduos Líquidos , Glycine max/metabolismo , Reatores Biológicos , Nitrogênio/análise
3.
Bioresour Technol ; 341: 125723, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34411939

RESUMO

Single cell protein (SCP) derived from microbial biomass represents a promising source of protein for animal feed additives. While microbial community-based approaches to SCP production using nutrient-rich wastewaters incur lower costs than traditional single organism-based approaches, they have received little attention. This review focuses on SCP production using wastewaters with an emphasis on food-processing wastewaters. An elemental carbon-to-nitrogen ratio ranging from 10 to 20 is recommended to promote a high microbial biomass protein yield. Proteobacteria was identified as the most prevalent phylum within SCP-producing microbial communities. More research is needed to determine the composition of the microbial community best suited for SCP production, as well as its relationship with the microbial community in influent food-processing wastewaters. Remaining challenges are target protein and essential amino acids content, protein quantification and biomass yield assessment. The review presents bioreactor design considerations towards defining suitable operating conditions for SCP production through microbial community-based fermentation.


Assuntos
Microbiota , Águas Residuárias , Ração Animal , Animais , Biomassa , Reatores Biológicos
4.
Curr Biol ; 27(5): 751-757, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28238661

RESUMO

Cytokinesis depends on a contractile actomyosin ring in many eukaryotes [1-3]. Myosin II is a key component of the actomyosin ring, although whether it functions as a motor or as an actin cross-linker to exert its essential role is disputed [1, 4, 5]. In Schizosaccharomyces pombe, the myo2-E1 mutation affects the upper 50 kDa sub-domain of the myosin II heavy chain, and cells carrying this lethal mutation are defective in actomyosin ring assembly at the non-permissive temperature [6, 7]. myo2-E1 also affects actomyosin ring contraction when rings isolated from permissive temperature-grown cells are incubated with ATP [8]. Here we report isolation of a compensatory suppressor mutation in the lower 50 kDa sub-domain (myo2-E1-Sup1) that reverses the inability of myo2-E1 to form colonies at the restrictive temperature. myo2-E1-Sup1 is capable of assembling normal actomyosin rings, although rings isolated from myo2-E1-Sup1 are defective in ATP-dependent contraction in vitro. Furthermore, the product of myo2-E1-Sup1 does not translocate actin filaments in motility assays in vitro. Superimposition of myo2-E1 and myo2-E1-Sup1 on available rigor and blebbistatin-bound myosin II structures suggests that myo2-E1-Sup1 may represent a novel actin translocation-defective allele. Actomyosin ring contraction and viability of myo2-E1-Sup1 cells depend on the late cytokinetic S. pombe myosin II isoform, Myp2p, a non-essential protein that is normally dispensable for actomyosin ring assembly and contraction. Our work reveals that Myo2p may function in two different and essential modes during cytokinesis: a motor activity-independent form that can promote actomyosin ring assembly and a motor activity-dependent form that supports ring contraction.


Assuntos
Miosina Tipo II/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Citoesqueleto de Actina/metabolismo , Actomiosina/fisiologia , Citocinese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA