Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Adv ; 74: 108391, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38848795

RESUMO

Viral vectors are an emerging, exciting class of biologics whose application in vaccines, oncology, and gene therapy has grown exponentially in recent years. Following first regulatory approval, this class of therapeutics has been vigorously pursued to treat monogenic disorders including orphan diseases, entering hundreds of new products into pipelines. Viral vector manufacturing supporting clinical efforts has spurred the introduction of a broad swath of analytical techniques dedicated to assessing the diverse and evolving panel of Critical Quality Attributes (CQAs) of these products. Herein, we provide an overview of the current state of analytics enabling measurement of CQAs such as capsid and vector identities, product titer, transduction efficiency, impurity clearance etc. We highlight orthogonal methods and discuss the advantages and limitations of these techniques while evaluating their adaptation as process analytical technologies. Finally, we identify gaps and propose opportunities in enabling existing technologies for real-time monitoring from hardware, software, and data analysis viewpoints for technology development within viral vector biomanufacturing.


Assuntos
Vetores Genéticos , Humanos , Animais , Terapia Genética , Vírus/genética , Vírus/isolamento & purificação , Controle de Qualidade
2.
Biotechnol Bioeng ; 120(10): 2953-2968, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37256741

RESUMO

Adeno-associated virus-based gene therapies have demonstrated substantial therapeutic benefit for the treatment of genetic disorders. In manufacturing processes, viral capsids are produced with and without the encapsidated gene of interest. Capsids devoid of the gene of interest, or "empty" capsids, represent a product-related impurity. As a result, a robust and scalable method to enrich full capsids is crucial to provide patients with as much potentially active product as possible. Anion exchange chromatography has emerged as a highly utilized method for full capsid enrichment across many serotypes due to its ease of use, robustness, and scalability. However, achieving sufficient resolution between the full and empty capsids is not trivial. In this work, anion exchange chromatography was used to achieve empty and full capsid resolution for adeno-associated virus serotype 5. A salt gradient screen of multiple salts with varied valency and Hofmeister series properties was performed to determine optimal peak resolution and aggregate reduction. Dual salt effects were evaluated on the same product and process attributes to identify any synergies with the use of mixed ion gradients. The modified process provided as high as ≥75% AAV5 full capsids (≥3-fold enrichment based on the percent full in the feed stream) with near baseline separation of empty capsids and achieved an overall vector genome step yield of >65%.


Assuntos
Capsídeo , Dependovirus , Humanos , Capsídeo/química , Dependovirus/genética , Sorogrupo , Vetores Genéticos , Cromatografia , Proteínas do Capsídeo/genética , Cloreto de Sódio
3.
ACS Appl Mater Interfaces ; 14(37): 42558-42567, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084265

RESUMO

This study presents the development of the first composite nonwoven fiber mats (NWFs) with infrared light-controlled permeability. The membranes were prepared by coating polypropylene NWFs with a photothermal layer of poly(N-isopropylacrylamide) (PNIPAm)-based microgels impregnated with graphene oxide nanoparticles (GONPs). This design enables "photothermal smart-gating" using light dosage as remote control of the membrane's permeability to electrolytes. Upon exposure to infrared light, the GONPs trigger a rapid local increase in temperature, which contracts the PNIPAm-based microgels lodged in the pore space of the NWFs. The contraction of the microgels can be reverted by cooling from the surrounding aqueous environment. The efficient conversion of infrared light into localized heat by GONPs coupled with the phase transition of the microgels above the lower critical solution temperature (LCST) of PNIPAm provide effective control over the effective porosity, and thus the permeability, of the membrane. The material design parameters, namely the monomer composition of the microgels and the GONP-to-microgel ratio, enable tuning the permeability shift in response to IR light; control NWFs coated with GONP-free microgels displayed thermal responsiveness only, whereas native NWFs showed no smart-gating behavior at all. This technology shows potential toward processing temperature-sensitive bioactive ingredients or remote-controlled bioreactors.


Assuntos
Microgéis , Géis , Grafite , Permeabilidade , Polipropilenos , Temperatura
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4860-4863, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086659

RESUMO

IMDs are typically considered for chronic-use applications and a limited set of implant locations. Resorbable IMDs seek to combine advances in flexible electronics with functional soft materials to enable new applications, including acute care, aiming at temporary interfacing with soft tissues. Poly(oc-tamethylene maleate (anhydride) citrate) (POMaC) is an elasto-mer with demonstrated high biocompatibility and bioresorbability, as well as tunable stiffness and surface properties. Despite its promises, POMaC has not yet been applied in engineering flexible electronics. Herein, a POMaC-based circuit board is demonstrated and characterized. The monomer composition and thermal degradation properties of the pre-polymer was characterized. POMaC-based circuit boards were constructed using traditional microfabrication methods, including spin coating and metallization. POMaC pre-polymer and films were thermally stable to 300°C, exhibit controlled degradation in simulated physiological conditions, and are cytocompatible. Deposited traces were stable during fabrication and processing, and an LED circuit was designed and fabricated using surface mount devices on a POMaC-circuit board. The results indicate the feasibility of POMaC-based circuit boards for use in resorbable IMDs. Future work will investigate more complex circuits, fully encapsulated devices, and mechanical characterization.


Assuntos
Eletrônica , Polímeros , Próteses e Implantes , Propriedades de Superfície
5.
J Mater Chem B ; 8(17): 3852-3868, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219269

RESUMO

The scheduled delivery of synergistic drug combinations is increasingly recognized as highly effective against advanced solid tumors. Of particular interest are composite systems that release a sequence of drugs with defined kinetics and molar ratios to enhance therapeutic effect, while minimizing the dose to patients. In this work, we developed a homogeneous composite comprising modified graphene oxide (GO) nanoparticles embedded in a Max8 peptide hydrogel, which provides controlled kinetics and molar ratios of release of doxorubicin (DOX) and gemcitabine (GEM). First, modified GO nanoparticles (tGO) were designed to afford high DOX loading and sustained release (18.9% over 72 h and 31.4% over 4 weeks). Molecular dynamics simulations were utilized to model the mechanism of DOX loading as a function of surface modification. In parallel, a Max8 hydrogel was developed to release GEM with faster kinetics and achieve a 10-fold molar ratio to DOX. The selected DOX/tGO nanoparticles were suspended in a GEM/Max8 hydrogel matrix, and the resulting composite was tested against a triple negative breast cancer cell line, MDA-MB-231. Notably, the composite formulation afforded a combination index of 0.093 ± 0.001, indicating a much stronger synergism compared to the DOX-GEM combination co-administered in solution (CI = 0.396 ± 0.034).


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Grafite/química , Hidrogéis/química , Peptídeos/química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Dinâmica Molecular , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA