Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Adv Mater ; : e2308802, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878366

RESUMO

Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.

2.
IEEE Rev Biomed Eng ; 16: 332-347, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-33531303

RESUMO

Among the various key networks in the human body, the nervous system occupies central importance. The debilitating effects of spinal cord injuries (SCI) impact a significant number of people throughout the world, and to date, there is no satisfactory method to treat them. In this paper, we review the major treatment techniques for SCI that include promising solutions based on information and communication technology (ICT) and identify the key characteristics of such systems. We then introduce two novel ICT-based treatment approaches for SCI. The first proposal is based on neural interface systems (NIS) with enhanced feedback, where the external machines are interfaced with the brain and the spinal cord such that the brain signals are directly routed to the limbs for movement. The second proposal relates to the design of self-organizing artificial neurons (ANs) that can be used to replace the injured or dead biological neurons. Apart from SCI treatment, the proposed methods may also be utilized as enabling technologies for neural interface applications by acting as bio-cyber interfaces between the nervous system and machines. Furthermore, under the framework of Internet of Bio-Nano Things (IoBNT), experience gained from SCI treatment techniques can be transferred to nano communication research.


Assuntos
Interfaces Cérebro-Computador , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Encéfalo , Tecnologia
3.
Sci Rep ; 11(1): 19600, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599208

RESUMO

Bio-inspired molecular communications (MC), where molecules are used to transfer information, is the most promising technique to realise the Internet of Nano Things (IoNT), thanks to its inherent biocompatibility, energy-efficiency, and reliability in physiologically-relevant environments. Despite a substantial body of theoretical work concerning MC, the lack of practical micro/nanoscale MC devices and MC testbeds has led researchers to make overly simplifying assumptions about the implications of the channel conditions and the physical architectures of the practical transceivers in developing theoretical models and devising communication methods for MC. On the other hand, MC imposes unique challenges resulting from the highly complex, nonlinear, time-varying channel properties that cannot be always tackled by conventional information and communication tools and technologies (ICT). As a result, the reliability of the existing MC methods, which are mostly adopted from electromagnetic communications and not validated with practical testbeds, is highly questionable. As the first step to remove this discrepancy, in this study, we report on the fabrication of a nanoscale MC receiver based on graphene field-effect transistor biosensors. We perform its ICT characterisation in a custom-designed microfluidic MC system with the information encoded into the concentration of single-stranded DNA molecules. This experimental platform is the first practical implementation of a micro/nanoscale MC system with nanoscale MC receivers, and can serve as a testbed for developing realistic MC methods and IoNT applications.

4.
IEEE Trans Nanobioscience ; 19(1): 25-34, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603791

RESUMO

The realization of bio-compatible nanomachines would pave the way for developing novel diagnosis and treatment techniques for the dysfunctions of intra-body nanonetworks and revolutionize the traditional healthcare methodologies making them less invasive and more efficient. The network of these nanomachines is aimed to be used for treating neuronal diseases such as developing an implant that bridges over the injured spinal cord to regain its normal functionality. Thus, nanoscale communication paradigms are needed to be investigated to facilitate communication between nanomachines. Communication among neurons is one of the most promising nanoscale communication paradigm, which necessitates the thorough communication theoretical analysis of information transmission among neurons. The information flow in neuro-spike communication channel is regulated by the ability of neurons to change synaptic strengths over time, i.e. synaptic plasticity. Thus, the performance evaluation of the nervous nanonetwork is incomplete without considering the influence of synaptic plasticity. In this paper, we focus on information transmission among hippocampal pyramidal neurons and provide a comprehensive channel model for MISO neuro-spike communication, which includes axonal transmission, vesicle release process, synaptic communication and spike generation. In this channel, the spike timing dependent plasticity (STDP) model is used to cover both synaptic depressiofan and potentiation depending on the temporal correlation between spikes generated by input and output neurons. Since synaptic strength changes depending on different physiological factors such as spiking rate of presynaptic neurons, number of correlated presynaptic neurons and the correlation factor among them, we simulate this model with correlated inputs and analyze the evolution of synaptic weights over time. Moreover, we calculate average mutual information between input and output of the channel and find the impact of plasticity and correlation among inputs on the information transmission. The simulation results reveal the impact of different physiological factors related to either presynaptic or postsynaptic neurons on the performance of MISO neuro-spike communication. Moreover, they provide guidelines for selecting the system parameters in a bio-inspired neuronal network according to the requirements of different applications.


Assuntos
Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Células Piramidais/fisiologia , Transmissão Sináptica/fisiologia , Axônios/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Modelos Neurológicos , Nanotecnologia , Sinapses/fisiologia
5.
IEEE Trans Nanobioscience ; 17(3): 342-351, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29994259

RESUMO

Communication among neurons, known as neuro-spike communication, is the most promising technique for realization of a bio-inspired nanoscale communication paradigm to achieve biocompatible nanonetworks. In neuro-spike communication, the information, encoded into spike trains, is communicated to various brain regions through neuronal network. An output neuron needs to receive signal from multiple input neurons to generate a spike. Hence, in this paper, we aim to quantify the information transmitted through the multiple-input single-output (MISO) neuro-spike communication channel by considering models for axonal propagation, synaptic transmission, and spike generation. Moreover, the spike generation and propagation in each neuron requires opening and closing of numerous ionic channels on the cell membrane, which consumes considerable amount of ATP molecules called metabolic energy. Thus, we evaluate how applying a constraint on available metabolic energy affects the maximum achievable mutual information of this system. To this aim, we derive a closed form equation for the sum rate of the MISO neuro-spike communication channel and analyze it under the metabolic cost constraints. Finally, we discuss the impacts of changes in number of pre-synaptic neurons on the achievable rate and quantify the tradeoff between maximum achievable sum rate and the consumed metabolic energy.


Assuntos
Potenciais de Ação/fisiologia , Biologia Computacional/métodos , Modelos Neurológicos , Rede Nervosa/fisiologia , Redes Neurais de Computação , Animais , Comunicação , Hipocampo/fisiologia , Nanotecnologia
6.
IEEE Trans Nanobioscience ; 17(3): 260-271, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29994535

RESUMO

Understanding the communication theoretical capabilities of information transmission among neurons, known as neuro-spike communication, is a significant step in developing bio-inspired solutions for nanonetworking. In this paper, we focus on a part of this communication known as synaptic transmission for pyramidal neurons in the Cornu Ammonis area of the hippocampus location in the brain and propose a communication-based model for it that includes effects of spike shape variation on neural calcium signaling and the vesicle release process downstream of it. For this aim, we find impacts of spike shape variation on opening of voltage-dependent calcium channels, which control the release of vesicles from the pre-synaptic neuron by changing the influx of calcium ions. Moreover, we derive the structure of the optimum receiver based on the Neyman-Pearson detection method to find the effects of spike shape variations on the functionality of neuro-spike communication. Numerical results depict that changes in both spike width and amplitude affect the error detection probability. Moreover, these two factors do not control the performance of the system independently. Hence, a proper model for neuro-spike communication should contain effects of spike shape variations during axonal transmission on both synaptic propagation and spike generation mechanisms to enable us to accurately explain the performance of this communication paradigm.


Assuntos
Potenciais de Ação/fisiologia , Modelos Neurológicos , Transmissão Sináptica/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Biologia Computacional , Hipocampo/citologia , Células Piramidais/fisiologia , Vesículas Sinápticas/fisiologia
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3343-3347, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060613

RESUMO

Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.


Assuntos
Neurônios , Cálcio , Canais de Cálcio , Modelos Neurológicos , Probabilidade , Processos Estocásticos
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3801-3805, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29060726

RESUMO

The aim of this paper is tracking Parkinson's disease (PD) progression based on its symptoms on vocal system using Unified Parkinsons Disease Rating Scale (UPDRS). We utilize a standard speech signal feature set, which contains 6373 static features as functionals of low-level descriptor (LLD) contours, and select the most informative ones using the maximal relevance and minimal redundancy based on correlations (mRMRC) criteria. Then, we evaluate performance of Gaussian mixture regression (GMR) and support vector regression (SVR) on estimating the third subscale of UPDRS, i.e., UPDRS: motor subscale (UPDRS-III). Among the most informative features, a list of features are selected after redundancy reduction. The selected features depict that LLDs providing information about spectrum flatness, spectral distribution of energy, and hoarseness of voice are the most important ones for estimating UPDRS-III. Moreover, the most informative statistical functions are related to range, maximum, minimum and standard deviation of LLDs, which is an evidence of the muscle weakness due to the PD. Furthermore, GMR outperforms SVR on compact feature sets while the performance of SVR improves by increasing number of features.


Assuntos
Doença de Parkinson , Progressão da Doença , Humanos , Índice de Gravidade de Doença , Fala , Voz
9.
IEEE Trans Nanobioscience ; 16(4): 248-256, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28368825

RESUMO

Understanding the fundamentals of communication among neurons, known as neuro-spike communication, leads to reach bio-inspired nanoscale communication paradigms. In this paper, we focus on a part of neuro-spike communication, known as axonal transmission, and propose a realistic model for it. The shape of the spike during axonal transmission varies according to previously applied stimulations to the neuron, and these variations affect the amount of information communicated between neurons. Hence, to reach an accurate model for neuro-spike communication, the memory of axon and its effect on the axonal transmission should be considered, which are not studied in the existing literature. In this paper, we extract the important factors on the memory of axon and define memory states based on these factors. We also describe the transition among these states and the properties of axonal transmission in each of them. Finally, we demonstrate that the proposed model can follow changes in the axonal functionality properly by simulating the proposed model and reporting the root mean square error between simulation results and experimental data.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Hipocampo/citologia , Modelos Neurológicos , Células Piramidais/fisiologia , Comunicação Celular/fisiologia , Nanotecnologia , Células Piramidais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA