Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Mater Chem B ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752707

RESUMO

The advent of three-dimensional (3D) bioprinting offers a feasible approach to construct complex structures for soft tissue regeneration. Carboxymethyl cellulose (CMC) has been emerging as a very promising biomaterial for 3D bioprinting. However, due to the inability to maintain the post-printed stability, CMC needs to be physically blended and/or chemically crosslinked with other polymers. In this context, this study presents the combination of CMC with xanthan gum (XG) and hyaluronic acid (HA) to formulate a multicomponent bioink, leveraging the printability of CMC and XG, as well as the cellular support properties of HA. The ionic crosslinking of printed constructs with iron(III) via the metal-ion coordination between ferric cations and carboxylate groups of the three polymers was introduced to induce improved mechanical strength and long-term stability. Moreover, immortalized human epidermal keratinocytes (HaCaT) and human foreskin fibroblasts (HFF) encapsulated within iron-crosslinked printed hydrogels exhibited excellent cell viability (more than 95%) and preserved morphology. Overall, the presented study highlights that the combination of these three biopolymers and the ionic crosslinking with ferric ions is a valuable strategy to be considered for the development of new and advanced hydrogel-based bioinks for soft tissue engineering applications.

2.
Laryngoscope Investig Otolaryngol ; 9(3): e1244, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736943

RESUMO

Introduction: In chronic rhinosinusitis (CRS), the congestion and blockage of the nose can cause anaerobic conditions within the sinus cavities which may promote the expression of virulence and antibiotic resistance genes in invading pathogens. Pseudomonas aeruginosa is a facultative anaerobic bacteria and causes severe recalcitrant CRS. In this study, we aimed to evaluate the antimicrobial resistance of P. aeruginosa isolates of CRS patients in planktonic and biofilm form grown in aerobic and anaerobic conditions. Methods: P. aeruginosa clinical isolates of CRS patients (n = 25) were grown in planktonic and biofilm form in aerobic and anaerobic conditions. Minimum inhibitory concentrations (MIC) of planktonic forms and minimum biofilm eradication concentrations (MBEC) were determined. Additionally, metabolic activity by fluorescein diacetate assay, biofilm biomass by crystal violet assay and eDNA concentration were assessed in both conditions. Results: P. aeruginosa planktonic cells grown in anaerobic condition exhibited increased gentamicin resistance (p < .01), whereas P. aeruginosa biofilms grown in anaerobic condition displayed significantly increased MBEC values for gentamicin (p < .0001) and levofloxacin (p < .001). The metabolic activity of anaerobic biofilms was significantly higher compared with aerobic biofilms (p < .0001). However, the biofilm biomass of isolates grown in aerobic conditions was higher than anaerobic conditions (p < .5). Conclusion: P. aeruginosa isolates from CRS patients grown in anaerobic conditions showed significantly increased resistance to antibiotics with an increased metabolic activity but decreased biofilm biomass. Level of Evidence: NA.

3.
Clin Immunol ; 263: 110221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636891

RESUMO

Staphylococcus aureus mucosal biofilms are associated with recalcitrant chronic rhinosinusitis (CRS). However, S. aureus colonisation of sinus mucosa is frequent in the absence of mucosal inflammation. This questions the relevance of S. aureus biofilms in CRS etiopathogenesis. This study aimed to investigate whether strain-level variation in in vitro-grown S. aureus biofilm properties relates to CRS disease severity, in vitro toxicity, and immune B cell responses in sinonasal tissue from CRS patients and non-CRS controls. S. aureus clinical isolates, tissue samples, and matched clinical datasets were collected from CRS patients with nasal polyps (CRSwNP), CRS without nasal polyps (CRSsNP), and controls. B cell responses in tissue samples were characterised by FACS. S. aureus biofilms were established in vitro, followed by measuring their properties of metabolic activity, biomass, colony-forming units, and exoprotein production. S. aureus virulence was evaluated using whole-genome sequencing, mass spectrometry and application of S. aureus biofilm exoproteins to air-liquid interface cultures of primary human nasal epithelial cells (HNEC-ALI). In vitro S. aureus biofilm properties were correlated with increased CRS severity scores, infiltration of antibody-secreting cells and loss of regulatory B cells in tissue samples. Biofilm exoproteins from S. aureus with high biofilm metabolic activity had enriched virulence genes and proteins, and negatively affected the barrier function of HNEC-ALI cultures. These findings support the notion of strain-level variation in S. aureus biofilms to be critical in the pathophysiology of CRS.


Assuntos
Biofilmes , Rinite , Sinusite , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Sinusite/imunologia , Sinusite/microbiologia , Staphylococcus aureus/imunologia , Rinite/imunologia , Rinite/microbiologia , Doença Crônica , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Pólipos Nasais/imunologia , Pólipos Nasais/microbiologia , Adulto , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Linfócitos B/imunologia , Índice de Gravidade de Doença , Idoso , Rinossinusite
4.
Int Forum Allergy Rhinol ; 14(3): 711-715, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37466463

RESUMO

KEY POINTS: Hydrocortisone 21-hemisuccinate (HCHS) influenced the growth and metabolism of Staphylococcus aureus S. aureus metabolic activity was high and antibiotic susceptibility low at 1.4 mg/mL HCHS S. aureus metabolized HCHS to cortisol and reduced poly(I:C)-induced IL-6 secretion.


Assuntos
Anti-Infecciosos , Staphylococcus aureus , Humanos , Staphylococcus , Hidrocortisona , Biofilmes , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
5.
Front Immunol ; 14: 1054588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993962

RESUMO

Background: Dysregulated inflammation is important in the pathogenesis of many diseases including cancer, allergy, and autoimmunity. Macrophage activation and polarisation are commonly involved in the initiation, maintenance and resolution of inflammation. Perhexiline (PHX), an antianginal drug, has been suggested to modulate macrophage function, but the molecular effects of PHX on macrophages are unknown. In this study we investigated the effect of PHX treatment on macrophage activation and polarization and reveal the underlying proteomic changes induced. Methods: We used an established protocol to differentiate human THP-1 monocytes into M1 or M2 macrophages involving three distinct, sequential stages (priming, rest, and differentiation). We examined the effect of PHX treatment at each stage on the polarization into either M1 or M2 macrophages using flow cytometry, quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA). Quantitative changes in the proteome were investigated using data independent acquisition mass spectrometry (DIA MS). Results: PHX treatment promoted M1 macrophage polarization, including increased STAT1 and CCL2 expression and IL-1ß secretion. This effect occurred when PHX was added at the differentiation stage of the M1 cultures. Proteomic profiling of PHX treated M1 cultures identified changes in metabolic (fatty acid metabolism, cholesterol homeostasis and oxidative phosphorylation) and immune signalling (Receptor Tyrosine Kinase, Rho GTPase and interferon) pathways. Conclusion: This is the first study to report on the action of PHX on THP-1 macrophage polarization and the associated changes in the proteome of these cells.


Assuntos
Perexilina , Proteômica , Humanos , Perexilina/metabolismo , Perexilina/farmacologia , Proteoma/metabolismo , Macrófagos , Diferenciação Celular , Inflamação/metabolismo
6.
Biometals ; 36(4): 913-925, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36729280

RESUMO

Skin and soft tissue infection (SSTI) caused by atypical mycobacteria such as Mycobacterium abscessus and Mycobacterium avium intracellulare complex (MAIC) have increased in recent years. Current therapeutic options are limited, and hence new and better therapies are urgently required. Colloidal Silver (CS) has been identified for its widespread antibacterial properties and silver-impregnated dressings have been used for SSTIs caused by various pathogens. The efficacy of Green Synthesized Colloidal Silver (GSCS) was investigated for bacterial growth inhibition (BGI) using a microdilution method and minimum biofilm eradication concentration (MBEC) using resazurin assay and confocal scanning laser microscopy (CSLM) of M. abscessus (n = 5) and MAIC (n = 5). The antibacterial effect of GSCS against M. abscessus infected macrophages was also evaluated. The in vitro cytotoxicity of GSCS on a human keratinocyte cell line (HaCaT) and neonatal foreskin fibroblasts was analyzed by the crystal violet proliferation assay. Average BGI and MBEC of GSCS varied between 0.7 and 22 ppm for M. abscessus and MAIC. The concentration of 3 ppm reduced M. abscessus-infection in macrophages significantly. GSCS was not cytotoxic to HaCaT and neonatal foreskin fibroblast cells at concentrations < 3 ppm up to 2 h exposure time. GSCS therefore, has the potential for topical application against atypical mycobacterial SSTI.


Assuntos
Micobactérias não Tuberculosas , Prata , Recém-Nascido , Humanos , Micobactérias não Tuberculosas/fisiologia , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes , Macrófagos
7.
Biomedicines ; 10(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35740385

RESUMO

Chronic rhinosinusitis (CRS) is a persistent inflammation of the nasal cavity and paranasal sinuses associated with tissue remodelling, dysfunction of the sinuses' natural defence mechanisms, and induction of different inflammatory clusters. The etiopathogenesis of CRS remains elusive, and both environmental factors, such as bacterial biofilms and the host's general condition, are thought to play a role. Bacterial biofilms have significant clinical relevance due to their potential to cause resistance to antimicrobial therapy and host defenses. Despite substantial medical advances, some CRS patients suffer from recalcitrant disease that is unresponsive to medical and surgical treatments. Those patients often have nasal polyps with tissue eosinophilia, S. aureus-dominant mucosal biofilm, comorbid asthma, and a severely compromised quality of life. This review aims to summarise the contemporary knowledge of inflammatory cells/pathways in CRS, the role of bacterial biofilm, and their impact on the severity of the disease. Here, an emphasis is placed on S. aureus biofilm and its secreted products. A better understanding of these factors might offer important diagnostic and therapeutic perceptions for recalcitrant disease.

8.
Biol Open ; 11(8)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35452072

RESUMO

Patient-derived organoids grown in three-dimensional cultures provide an excellent platform for phenotypic high-throughput screening and drug-response research. Organoid technology has been applied to study stem cell biology and various human pathologies. This study investigates the characteristics and cellular morphology of organoids derived from primary human nasal epithelial cells (HNECs) of chronic rhinosinusitis (CRS) patients. Nasal organoids were cultured up to 20 days and morphological, cell composition and functional parameters were measured by immunofluorescence, RT-qPCR, western blot and FACS analysis. The results showed that nasal organoids expressed the stem cell marker leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), and markers for apical junction genes, goblet cells and ciliated cells. Moreover, we were able to regrow and expand the nasal organoids well after freezing and thawing. This study provides an effective and feasible method for development of human nasal organoids, suitable for the phenotypic high-throughput screening and drug response research.


Assuntos
Células Epiteliais , Organoides , Humanos , Organoides/patologia , Células-Tronco
10.
Microbiol Res ; 255: 126927, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34875424

RESUMO

Corynebacterium accolens strains are increasingly recognized as beneficial bacteria that can confer a health benefit on the host. In the current study, the probiotic potential of three C. accolens strains, C779, C781 and C787 derived from a healthy human nasal cavity were investigated. These strains were examined for their adhesion to HNECs, competition with Staphylococcus aureus for adhesion, toxicity, induction of IL-6, antibiotic susceptibility and the presence of antibiotic resistance and virulence genes. Furthermore, the safety and efficacy of strains were evaluated in vivo using Caenorhabditis elegans. The adhesion capacity of C. accolens to HNECs was strain-dependent. Highest adhesion was observed for strain C781. None of the C. accolens strains tested caused cell lysis. All strains were able to outcompete S. aureus for cell adhesion and caused a significant decrease of IL-6 production by HNECs co-exposed to S. aureus when compared to the control groups. All strains were sensitive or showed intermediate sensitivity to 10 different antibiotics. Whole Genome Sequence analysis showed C. accolens C781 and C787 did not possess antibiotic resistance genes whereas strain C779 harboured 5 genes associated with resistance to Aminoglycoside, Chloramphenicol and Erythromycin. In addition, no virulence genes were detected in any of the 3 strains. Moreover, the tested strains had no detrimental effect on worm survival and induced protection from S. aureus-mediated infection. Taken all together, C. accolens strains, C781 and C787 displayed probiotic potential and hold promise for use in clinical applications for combating dysbiosis in chronic rhinosinusitis.

11.
Toxicol Lett ; 353: 27-33, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34627954

RESUMO

Trimellitic anhydride (TMA) is a chemical agent classified as a low molecular weight (LMW) agent causing occupational rhinitis (OR) or asthma. Although TMA is recognized as a respiratory sensitizer, the direct and non-immunologic effects of TMA remain unclear. Air- liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects were treated with TMA, followed by measurement of the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextran and immunofluorescence of tight junction proteins claudin-1 and zonula occludens-1 (ZO-1). The cytotoxicity of TMA was evaluated by lactate dehydrogenase (LDH) assay. TMA at concentrations of 2 and 4 mg/mL significantly reduced the TEER within 10 min (p = 0.0177 on 2 mg/mL; p < 0.0001 on 4 mg/mL). The paracellular permeability of FITC-dextran was significantly increased upon challenge with 4 mg/mL TMA for 3 h (p = 0.0088) and 6 h (p = 0.0004). TMA treatment induced a reduction in the fluorescence intensity of claudin-1 and ZO-1 in a dose-dependent manner. LDH assay revealed 4 mg/mL TMA induced cytotoxicity only after 6 h incubation, while 1 or 2 mg/mL TMA caused no cytotoxicity. Our results suggest that TMA has a potential to penetrate the epithelial barrier by disrupting claudin-1 and ZO-1, indicating an important role for sensitization and OR development.


Assuntos
Células Epiteliais/efeitos dos fármacos , Anidridos Ftálicos/toxicidade , Adulto , Sobrevivência Celular/efeitos dos fármacos , Claudina-1/genética , Claudina-1/metabolismo , Dextranos , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Feminino , Fluoresceína-5-Isotiocianato/análogos & derivados , Técnica Direta de Fluorescência para Anticorpo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Nariz/citologia , Permeabilidade , Anidridos Ftálicos/administração & dosagem , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
12.
Adv Healthc Mater ; 10(22): e2101439, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34468088

RESUMO

The development of next-generation of bioinks aims to fabricate anatomical size 3D scaffold with high printability and biocompatibility. Along with the progress in 3D bioprinting, 2D nanomaterials (2D NMs) prove to be emerging frontiers in the development of advanced materials owing to their extraordinary properties. Harnessing the properties of 2D NMs in 3D bioprinting technologies can revolutionize the development of bioinks by endowing new functionalities to the current bioinks. First the main contributions of 2D NMS in 3D bioprinting technologies are categorized here into six main classes: 1) reinforcement effect, 2) delivery of bioactive molecules, 3) improved electrical conductivity, 4) enhanced tissue formation, 5) photothermal effect, 6) and stronger antibacterial properties. Next, the recent advances in the use of each certain 2D NMs (1) graphene, 2) nanosilicate, 3) black phosphorus, 4) MXene, 5) transition metal dichalcogenides, 6) hexagonal boron nitride, and 7) metal-organic frameworks) in 3D bioprinting technology are critically summarized and evaluated thoroughly. Third, the role of physicochemical properties of 2D NMSs on their cytotoxicity is uncovered, with several representative examples of each studied 2D NMs. Finally, current challenges, opportunities, and outlook for the development of nanocomposite bioinks are discussed thoroughly.


Assuntos
Bioimpressão , Nanocompostos , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais
13.
Pathogens ; 10(7)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34357998

RESUMO

Background: Viral entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) via the spike protein enables endocytosis into host cells using the ACE2 receptor and TMPRSS2. The frequent upper respiratory tract symptoms of COVID-19 and the localization of the virus to the nasopharynx, the most common site of swabbing, indicate that the sinonasal mucosa may play an important role in SARS-CoV2 infection and viral replication. Methods: This paper investigates the presence of ACE2 receptor and TMPRESS2 expression in the primary human nasal epithelial cells (HNECs) from the following: chronic rhinosinusitis without nasal polyps (CRSsNP), CRS with nasal polyps (CRSwNP) and control (non-CRS) patients, and maps the expression changes when exposed to Th1, Th2, Th17-associated cytokines. Results: We found that ACE2 and TMPRSS2 expression was higher in control HNECs than CRSwNP HNECs, and that both ACE2 and TMPRSS2 were downregulated further by Th2 cytokines in CRSwNP HNECs. Conclusions: This indicates an immune dysregulated state of CRSwNP mucosa, which normally contributes to a chronic inflammatory state, and might support an altered susceptibility to SARS-CoV2 infection and transmission.

14.
Allergy ; 76(11): 3459-3469, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34033126

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) is a common chronic respiratory condition, frequently associated with asthma and affecting the majority of cystic fibrosis (CF) patients. Pseudomonas aeruginosa infections and biofilms have been implicated in recalcitrant CRS. One of the mechanisms of action for bacteria in CRS and CF is mucosal barrier disruption by secreted products that contribute to the inflammation. However, the role of biofilm and planktonic forms of P. aeruginosa in this process is not known. The aim is to determine the effect of P. aeruginosa exoproteins isolated from CF and non-CF CRS patients on the mucosal barrier. METHODS: Exoproteins from 40 P. aeruginosa isolates were collected in planktonic and biofilm forms and applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells (HNECs). Mucosal barrier integrity was evaluated by transepithelial electrical resistance (TEER), passage of FITC-dextrans and immunofluorescence of tight junction proteins. Cytotoxicity assays were performed to measure cell viability, and IL-6 ELISA was carried out to evaluate pro-inflammatory effects. RESULTS: Planktonic exoproteins from 20/40 (50%) clinical isolates had a significant detrimental effect on the barrier and significantly increased IL-6 production. Barrier disruption was characterized by a reduced TEER, increased permeability of FITC-dextrans and discontinuous immunolocalization of tight junction proteins and was significantly more prevalent in isolates harvested from patients with comorbid asthma (P < .05). CONCLUSION: Exoproteins from planktonic P. aeruginosa clinical isolates from asthmatic CRS patients have detrimental effects on the mucosal barrier and induce IL-6 production potentially contributing to the mucosal inflammation in CRS patients.


Assuntos
Asma , Sinusite , Células Cultivadas , Humanos , Mucosa Nasal , Pseudomonas aeruginosa
15.
Front Cell Infect Microbiol ; 11: 655666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981629

RESUMO

Background: From the first detection in 2019, SARS-CoV-2 infections have spread rapidly worldwide and have been proven to cause an urgent and important health problem. SARS-CoV-2 cell entry depends on two proteins present on the surface of host cells, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). The nasal cavity is thought to be one of the initial sites of infection and a possible reservoir for dissemination within and between individuals. However, it is not known how the expression of these genes is regulated in the nasal mucosa. Objective: In this study, we examined whether the expression of ACE2 and TMPRSS2 is affected by innate immune signals in the nasal mucosa. We also investigated how fluticasone propionate (FP), a corticosteroid used as an intranasal steroid spray, affects the gene expression. Methods: Primary human nasal epithelial cells (HNECs) were collected from the nasal mucosa and incubated with Toll-like receptor (TLR) agonists and/or fluticasone propionate (FP), followed by quantitative PCR, immunofluorescence, and immunoblot analyses. Results: Among the TLR agonists, the TLR3 agonist Poly(I:C) significantly increased ACE2 and TMPRSS2 mRNA expression in HNECs (ACE2 36.212±11.600-fold change, p<0.0001; TMPRSS2 5.598±2.434-fold change, p=0.031). The ACE2 protein level was also increased with Poly(I:C) stimulation (2.884±0.505-fold change, p=0.003). The Poly(I:C)-induced ACE2 expression was suppressed by co-incubation with FP (0.405±0.312-fold change, p=0.044). Conclusion: The activation of innate immune signals via TLR3 promotes the expression of genes related to SARS-CoV2 cell entry in the nasal mucosa, although this expression is suppressed in the presence of FP. Further studies are required to evaluate whether FP suppresses SARS-CoV-2 viral cell entry.


Assuntos
COVID-19 , Peptidil Dipeptidase A , Enzima de Conversão de Angiotensina 2 , Células Epiteliais , Fluticasona , Humanos , Peptidil Dipeptidase A/genética , RNA Viral , SARS-CoV-2
16.
Carbohydr Polym ; 264: 117989, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33910727

RESUMO

Bioink with inherent antibacterial activity is of particular interest for tissue engineering application due to the growing number of bacterial infections associated with impaired wound healing or bone implants. However, the development of cell-laden bioink with potent antibacterial activity while supporting tissue regeneration proved to be challenging. Here, we introduced a cell-laden antibacterial bioink based on Methylcellulose/Alginate (MC/Alg) hydrogel for skin tissue engineering via elimination of the risks associated with a bacterial infection. The key feature of the bioink is the use of gallium (Ga+3) in the design of bioink formulation with dual functions. First, Ga+3 stabilized the hydrogel bioink by the formation of ionic crosslinking with Alg chains. Second, the gallium-crosslinked bioink exhibited potent antibacterial activity toward both Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria with a bactericidal rate of 99.99 %. In addition, it was found that the developed bioink supported encapsulated fibroblast cellular functions.


Assuntos
Alginatos/farmacologia , Antibacterianos/farmacologia , Bioimpressão/métodos , Gálio/farmacologia , Hidrogéis/química , Metilcelulose/farmacologia , Engenharia Tecidual/métodos , Alginatos/química , Antibacterianos/química , Células Cultivadas , Gálio/química , Humanos , Metilcelulose/química , Testes de Sensibilidade Microbiana/métodos , Impressão Tridimensional , Pseudomonas aeruginosa/efeitos dos fármacos , Reologia/métodos , Staphylococcus aureus/efeitos dos fármacos , Alicerces Teciduais/química
17.
Auris Nasus Larynx ; 48(5): 890-897, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33526321

RESUMO

OBJECTIVE: Recently, depleted tissue zinc levels were found in nasal mucosa from patients with chronic rhinosinusitis (CRS) in correlation with tissue eosinophilia, however, no clinical biomarkers for tissue zinc levels have been identified. Metallothionein-3 (MT3) is an intracellular zinc chelator and previous data showed MT3 mRNA levels to be reduced in CRS patients with nasal polyps (CRSwNP). In this study, we examined the correlation between MT3 expression and zinc levels in nasal mucosa and primary human nasal epithelial cells (HNECs) to investigate whether MT3 could be a clinical biomarker for tissue zinc levels. METHOD: Tissue was harvested from 36 patients and mounted on tissue micro-array (TMA) slides. MT3 expression and tissue zinc fluorescence intensity were measured at different areas within the mucosa (surface epithelium and lamina propria) and compared between controls, CRSwNP and CRS without nasal polyps (CRSsNP) patients. MT3 mRNA and protein expression were examined in zinc-depleted HNECs by qPCR and immunofluorescence microscopy. RESULTS: MT3 expression in CRSwNP was significantly decreased in both surface epithelium (p<0.001 to controls) and lamina propria (p = 0.0491 to controls). There was a significant positive correlation between tissue zinc levels and MT3 expression in nasal mucosa (r = 0.45, p = 0.007). In zinc-deplete HNECs, MT3 expression was significantly decreased at mRNA (p = 0.02) and protein level (p<0.01). There was a significant positive correlation between tissue zinc levels and MT3 expression within individual HNECs (r = 0.59, p<0.001). CONCLUSIONS: MT3 expression reflects intramucosal zinc levels in both nasal mucosa and HNECs indicating MT3 could be used as a clinical biomarker for monitoring intracellular zinc levels in the nasal mucosa.


Assuntos
Metalotioneína 3/genética , Mucosa Nasal/metabolismo , Pólipos Nasais/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Zinco/metabolismo , Biomarcadores , Doença Crônica , Células Epiteliais/metabolismo , Humanos , Metalotioneína 3/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Front Allergy ; 2: 780425, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387020

RESUMO

The respiratory tract is constantly at risk of invasion by microorganisms such as bacteria, viruses, and fungi. In particular, the mucosal epithelium of the nasal cavity and paranasal sinuses is at the very forefront of the battles between the host and the invading pathogens. Recent studies have revealed that the epithelium not only constitutes a physical barrier but also takes an essential role in the activation of the immune system. One of the mechanisms equipped in the epithelium to fight against microorganisms is the Toll-like receptor (TLR) response. TLRs recognize common structural components of microorganisms and activate the innate immune system, resulting in the production of a plethora of cytokines and chemokines in the response against microbes. As the epithelia-derived cytokines are deeply involved in the pathogenesis of inflammatory conditions in the nasal cavity and paranasal sinuses, such as chronic rhinosinusitis (CRS) and allergic rhinitis (AR), the molecules involved in the TLR response may be utilized as therapeutic targets for these diseases. There are several differences in the TLR response between nasal and bronchial epithelial cells, and knowledge of the TLR signals in the upper airway is sparse compared to that in the lower airway. In this review, we provide recent evidence on TLR signaling in the upper airway, focusing on the expression, regulation, and responsiveness of TLRs in human nasal epithelial cells (HNECs). We also discuss how TLRs in the epithelium are involved in the pathogenesis of, and possible therapeutic targeting, for CRS and AR.

19.
Front Allergy ; 2: 692049, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35387029

RESUMO

Background: Dermatophagoides pteronyssinus 1/2 (Der p 1/Der p 2) are regarded as important allergens of house dust mite (HDM). However, the effect of both products on the epithelial barrier and immune response of patients with and without HDM allergic rhinitis (AR) remains unclear. Methods: Air-liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects (non-AR) (n = 9) and HDM-AR patients (n = 9) were treated with Der P 1 and Der P 2, followed by testing the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextrans and immunofluorescence of claudin-1 and ZO-1. Interleukin-6 (IL-6) production was evaluated by ELISA. Results: Der p 1 reduced TEER significantly in a transient and dose-dependent manner in HNEC-ALI cultures from HDM-AR and non-AR patients, whilst the paracellular permeability was not affected. TEER was significantly reduced by Der p 1 at the 10-min time point in HDM-AR patients compared to non-AR patients (p = 0.0259). Compared to no-treatment control, in HNECs derived from HDM-AR patients, Der p 1 significantly cleaved claudin-1 after 30 min exposure (72.7 ± 9.5 % in non-AR group, 39.9 ± 7.1 % in HDM-AR group, p = 0.0286) and induced IL-6 secretion (p = 0.0271). Conclusions: Our results suggest that patients with HDM-AR are more sensitive to Der p 1 than non-AR patients with increased effects of Der p1 on the mucosal barrier and induction of inflammation, indicating an important role for Der p1 in sensitization and HDM-AR development.

20.
J Allergy Clin Immunol ; 147(1): 168-178, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32750382

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) has a complex and multifactorial pathogenesis with a heterogeneous inflammatory profile. Proteomic analysis of nasal mucus may enable further understanding of protein abundances and biologic processes present in CRS and its endotypes compared with in healthy patients. OBJECTIVE: Our aim was to determine differences in the nasal mucus proteome of healthy patients and patients with CRS. METHODS: Nasal mucus was obtained from healthy patients, patients with CRS without nasal polyps (CRSsNP), and patients with CRS with nasal polyps (CRSwNP) before surgery. Gel electrophoresis was performed to fractionate the complex protein extracts before mass spectrometry analysis. Gene set enrichment analysis was performed on differentially expressed proteins. RESULTS: A total of 33 patients were included in this study (12 healthy, 10 with CRSsNP, and 11 with CRSwNP). In all, 1142 proteins were identified in mucus samples from healthy patients, 761 in mucus samples from patients with CRSsNP, and 998 in mucus samples from patients with CRSwNP. Dysfunction in immunologic pathways, reduced cellular signaling, and increased cellular metabolism with associated tissue remodeling pathways were present in patients with CRS compared with in healthy patients. CONCLUSION: Significant downregulation of mucosal immunity and antioxidant pathways with increased tissue modeling processes may account for the clinical manifestations of CRS. Ultimately, the differing proteome and biologic processes provide further insight into CRS pathogenesis and its endotypes.


Assuntos
Muco/metabolismo , Mucosa Nasal/metabolismo , Proteoma/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Adulto , Idoso , Doença Crônica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA