Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nat Food ; 4(11): 933-934, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904025

Assuntos
Bactérias , Plantas
2.
Nat Microbiol ; 7(3): 352-353, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246659
3.
Sci Data ; 8(1): 136, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34021166

RESUMO

Earthworms are an important soil taxon as ecosystem engineers, providing a variety of crucial ecosystem functions and services. Little is known about their diversity and distribution at large spatial scales, despite the availability of considerable amounts of local-scale data. Earthworm diversity data, obtained from the primary literature or provided directly by authors, were collated with information on site locations, including coordinates, habitat cover, and soil properties. Datasets were required, at a minimum, to include abundance or biomass of earthworms at a site. Where possible, site-level species lists were included, as well as the abundance and biomass of individual species and ecological groups. This global dataset contains 10,840 sites, with 184 species, from 60 countries and all continents except Antarctica. The data were obtained from 182 published articles, published between 1973 and 2017, and 17 unpublished datasets. Amalgamating data into a single global database will assist researchers in investigating and answering a wide variety of pressing questions, for example, jointly assessing aboveground and belowground biodiversity distributions and drivers of biodiversity change.


Assuntos
Biodiversidade , Oligoquetos/classificação , Animais , Biomassa
4.
FEMS Microbiol Lett ; 368(3)2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33507263

RESUMO

Empirical evidence supports selection of soil microbial communities by edaphic properties across large spatial scales; however, less is known at smaller spatial scales. The goal of this research was to evaluate relationships between ecosystem characteristics and bacterial community structure/function at broad taxonomic resolutions in soils across small spatial scales. We employed 16S rRNA gene sequencing, community-level physiological profiling and soil chemical analysis to address this goal. We found weak relationships between gradients in soil characteristics and community structure/function. Specific operational taxonomic units did not respond to edaphic variation, but Acidobacteria, Bacteroidetes and Nitrospirae shifted their relative abundances. High metabolic diversity within the bacterial communities was observed despite general preference of Tween 40/80. Carbon metabolism patterns suggest dominance of functional specialists at our times of measurement. Pairwise comparison of carbon metabolism patterns indicates high levels of functional redundancy. Lastly, at broad taxonomic scales, community structure and function weakly covary with edaphic properties. This evidence suggests that stochasticity or unmeasured environmental gradients may be influential in bacterial community assembly in soils at small spatial scales.


Assuntos
Biodiversidade , Carbono/metabolismo , Microbiota/fisiologia , Microbiologia do Solo , Microbiota/genética , RNA Ribossômico 16S/genética , Solo/química , Texas , Meio Selvagem
5.
J Ecol ; 108(5): 1860-1873, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999508

RESUMO

Plant species that expand their range in response to current climate change will encounter soil communities that may hinder, allow or even facilitate plant performance. It has been shown repeatedly for plant species originating from other continents that these plants are less hampered by soil communities from the new than from the original range. However, information about the interactions between intra-continental range expanders and soil communities is sparse, especially at community level.Here we used a plant-soil feedback experiment approach to examine if the interactions between range expanders and soil communities change during range expansion. We grew communities of range-expanding and native plant species with soil communities originating from the original and new range of range expanders. In these conditioned soils, we determined the composition of fungi and bacteria by high-throughput amplicon sequencing of the ITS region and the 16S rRNA gene respectively. Nematode community composition was determined by microscopy-based morphological identification. Then we tested how these soil communities influence the growth of subsequent communities of range expanders and natives.We found that after the conditioning phase soil bacterial, fungal and nematode communities differed by origin and by conditioning plant communities. Despite differences in bacterial, fungal and nematode communities between original and new range, soil origin did not influence the biomass production of plant communities. Both native and range expanding plant communities produced most above-ground biomass in soils that were conditioned by plant communities distantly related to them. Synthesis. Communities of range-expanding plant species shape specific soil communities in both original and new range soil. Plant-soil interactions of range expanders in communities can be similar to the ones of their closely related native plant species.

6.
Trends Plant Sci ; 25(10): 1017-1029, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32467065

RESUMO

It is generally accepted that plants locally influence the composition and activity of their rhizosphere microbiome, and that rhizosphere community assembly further involves a hierarchy of constraints with varying strengths across spatial and temporal scales. However, our knowledge of rhizosphere microbiomes is largely based on single-location and time-point studies. Consequently, it remains difficult to predict patterns at large landscape scales, and we lack a clear understanding of how the rhizosphere microbiome forms and is maintained by drivers beyond the influence of the plant. By synthesizing recent literature and collating data on rhizosphere microbiomes, we point out the opportunities and challenges offered by advances in molecular biology, bioinformatics, and data availability. Specifically, we highlight the use of exact sequence variants, coupled with existing and newly generated data to decipher the rules of rhizosphere community assembly across large spatial and taxonomic scales.


Assuntos
Microbiota , Rizosfera , Raízes de Plantas , Plantas , Microbiologia do Solo
7.
Biol Rev Camb Philos Soc ; 95(2): 350-364, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31729831

RESUMO

Soil is one of the most biodiverse terrestrial habitats. Yet, we lack an integrative conceptual framework for understanding the patterns and mechanisms driving soil biodiversity. One of the underlying reasons for our poor understanding of soil biodiversity patterns relates to whether key biodiversity theories (historically developed for aboveground and aquatic organisms) are applicable to patterns of soil biodiversity. Here, we present a systematic literature review to investigate whether and how key biodiversity theories (species-energy relationship, theory of island biogeography, metacommunity theory, niche theory and neutral theory) can explain observed patterns of soil biodiversity. We then discuss two spatial compartments nested within soil at which biodiversity theories can be applied to acknowledge the scale-dependent nature of soil biodiversity.


Assuntos
Biodiversidade , Solo , Animais , Microbiologia do Solo
8.
Science ; 366(6464): 480-485, 2019 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-31649197

RESUMO

Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.


Assuntos
Biodiversidade , Oligoquetos , Distribuição Animal , Animais , Biomassa , Clima , Planeta Terra , Ecossistema , Modelos Lineares , Modelos Biológicos , Solo
9.
Glob Chang Biol ; 25(8): 2714-2726, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31002208

RESUMO

Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web as they include bacterivores, fungivores, omnivores and root herbivores. However, their community composition under climate change-driven intracontinental range-expanding plants has been studied almost exclusively under controlled conditions, whereas little is known about actual patterns in the field. Here, we use novel molecular sequencing techniques combined with morphological quantification in order to examine nematode communities in the rhizospheres of four range-expanding and four congeneric native species along a 2,000 km latitudinal transect from South-Eastern to North-Western Europe. We tested the hypotheses that latitudinal shifts in nematode community composition are stronger in range-expanding plant species than in congeneric natives and that in their new range, range-expanding plant species accumulate fewest root-feeding nematodes. Our results show latitudinal variation in nematode community composition of both range expanders and native plant species, while operational taxonomic unit richness remained the same across ranges. Therefore, range-expanding plant species face different nematode communities at higher latitudes, but this is also the case for widespread native plant species. Only one of the four range-expanding plant species showed a stronger shift in nematode community composition than its congeneric native and accumulated fewer root-feeding nematodes in its new range. We conclude that variation in nematode community composition with increasing latitude occurs for both range-expanding and native plant species and that some range-expanding plant species may become released from root-feeding nematodes in the new range.


Assuntos
Nematoides , Solo , Animais , Europa (Continente) , Plantas , Rizosfera
10.
Nat Ecol Evol ; 3(4): 604-611, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911144

RESUMO

Plant range expansion is occurring at a rapid pace, largely in response to human-induced climate warming. Although the movement of plants along latitudinal and altitudinal gradients is well-documented, effects on belowground microbial communities remain largely unknown. Furthermore, for range expansion, not all plant species are equal: in a new range, the relatedness between range-expanding plant species and native flora can influence plant-microorganism interactions. Here we use a latitudinal gradient spanning 3,000 km across Europe to examine bacterial and fungal communities in the rhizosphere and surrounding soils of range-expanding plant species. We selected range-expanding plants with and without congeneric native species in the new range and, as a control, the congeneric native species, totalling 382 plant individuals collected across Europe. In general, the status of a plant as a range-expanding plant was a weak predictor of the composition of bacterial and fungal communities. However, microbial communities of range-expanding plant species became more similar to each other further from their original range. Range-expanding plants that were unrelated to the native community also experienced a decrease in the ratio of plant pathogens to symbionts, giving weak support to the enemy release hypothesis. Even at a continental scale, the effects of plant range expansion on the belowground microbiome are detectable, although changes to specific taxa remain difficult to decipher.


Assuntos
Microbiota , Plantas/microbiologia , Rizosfera , Bactérias/genética , Bactérias/isolamento & purificação , Mudança Climática , DNA Bacteriano/análise , DNA Fúngico/análise , Europa (Continente) , Fungos/genética , Fungos/isolamento & purificação , Microbiologia do Solo
11.
Funct Ecol ; 33(12): 2402-2416, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31894174

RESUMO

Current climate warming enables plant species and soil organisms to expand their range to higher latitudes and altitudes. At the same time, climate change increases the incidence of extreme weather events such as drought. While it is expected that plants and soil organisms originating from the south are better able to cope with drought, little is known about the consequences of their range shifts on soil functioning under drought events.Here, we test how range-expanding plant species and soil communities may influence soil functioning under drought. We performed a full-factorial outdoor mesocosm experiment with plant communities of range expanders or related natives, with soil inocula from the novel or the original range, with or without summer drought. We measured litter decomposition, carbon mineralization and enzyme activities, substrate-induced respiration and the relative abundance of soil saprophytic fungi immediately after drought and at 6 and 12 weeks after rewetting.Drought decreased all soil functions regardless of plant and soil origin except one; soil respiration was less reduced in soils of range-expanding plant communities, suggesting stronger resistance to drought. After rewetting, soil functioning responses depended on plant and soil origin. Soils of native plant communities with a history of drought had more litter mass loss and higher relative abundance of saprophytic fungi than soils without drought and soils of range expanders. Functions of soil from range expanders recovered in a more conservative manner than soils of natives, as litter mass loss did not exceed the control rates. At the end of the experiment, after rewetting, most soil functions in mesocosms with drought history did not differ anymore from the control.We conclude that functional consequences of range-expanding plants and soil biota may interact with effects of drought and that these effects are most prominent during the first weeks after rewetting of the soil. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13453/suppinfo can be found within the Supporting Information of this article.

12.
Trends Plant Sci ; 23(9): 759-768, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30072227

RESUMO

An understanding of above-belowground (AG-BG) ecology is important for evaluating how plant interactions with enemies, symbionts, and decomposers affect species diversity and will respond to global changes. However, research questions and experiments often focus on only a limited number of interactions, creating an incomplete picture of how entire communities may be involved in AG-BG community ecology. Therefore, a pressing challenge is to formulate hypotheses of AG-BG interactions when considering communities in their full complexity. Here we discuss how network analyses can be a powerful tool to progress AG-BG research, link across scales from individual to community and ecosystem, visualize community interactions between the two (AG and BG) subsystems, and develop testable hypotheses.


Assuntos
Ecologia , Ecossistema , Componentes Aéreos da Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Plantas , Big Data , Biodiversidade , Correlação de Dados , Raízes de Plantas/fisiologia
13.
Nat Microbiol ; 3(2): 189-196, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29158606

RESUMO

The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.


Assuntos
Bactérias/classificação , Fenômenos Fisiológicos Bacterianos , Ecologia , Microbiota , Microbiologia do Solo , Bactérias/genética , Biodiversidade , DNA Bacteriano/genética , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Aprendizado de Máquina , Interações Microbianas , Filogenia , RNA Ribossômico 16S/genética , Solo
15.
Gigascience ; 4: 34, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26236474

RESUMO

High-throughput sequencing-based metabarcoding studies produce vast amounts of ecological data, but a lack of consensus on standardization of metadata and how to refer to the species recovered severely hampers reanalysis and comparisons among studies. Here we propose an automated workflow covering data submission, compression, storage and public access to allow easy data retrieval and inter-study communication. Such standardized and readily accessible datasets facilitate data management, taxonomic comparisons and compilation of global metastudies.


Assuntos
Código de Barras de DNA Taxonômico , Biodiversidade , Sequenciamento de Nucleotídeos em Larga Escala , Alinhamento de Sequência
16.
Glob Chang Biol ; 21(4): 1590-600, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25363131

RESUMO

In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity.


Assuntos
Dióxido de Carbono/análise , Mudança Climática , Ecossistema , Nitrogênio/análise , Microbiologia do Solo , Aquecimento Global , Modelos Teóricos , Solo/química
17.
Proc Biol Sci ; 281(1795)2014 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-25274366

RESUMO

Soil biota play key roles in the functioning of terrestrial ecosystems, however, compared to our knowledge of above-ground plant and animal diversity, the biodiversity found in soils remains largely uncharacterized. Here, we present an assessment of soil biodiversity and biogeographic patterns across Central Park in New York City that spanned all three domains of life, demonstrating that even an urban, managed system harbours large amounts of undescribed soil biodiversity. Despite high variability across the Park, below-ground diversity patterns were predictable based on soil characteristics, with prokaryotic and eukaryotic communities exhibiting overlapping biogeographic patterns. Further, Central Park soils harboured nearly as many distinct soil microbial phylotypes and types of soil communities as we found in biomes across the globe (including arctic, tropical and desert soils). This integrated cross-domain investigation highlights that the amount and patterning of novel and uncharacterized diversity at a single urban location matches that observed across natural ecosystems spanning multiple biomes and continents.


Assuntos
Biodiversidade , Microbiologia do Solo , Solo , Dados de Sequência Molecular , Cidade de Nova Iorque , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , RNA Ribossômico 18S/genética , RNA Ribossômico 18S/metabolismo , Análise de Sequência de DNA , Solo/parasitologia
18.
Ecol Lett ; 17(7): 794-802, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24751288

RESUMO

Identifying the traits that determine spatial distributions can be challenging when studying organisms, like bacteria, for which phenotypic information is limited or non-existent. However, genomic data provide another means to infer traits and determine the ecological attributes that account for differences in distributions. We determined the spatial distributions of ~124 000 soil bacterial taxa across a 3.41 km(2) area to determine whether we could use phylogeny and/or genomic traits to explain differences in habitat breadth. We found that occupancy was strongly correlated with environmental range; taxa that were more ubiquitous were found across a broader range of soil conditions. Across the ~500 taxa for which genomic information was available, genomic traits were more useful than phylogeny alone in explaining the variation in habitat breadth; bacteria with larger genomes and more metabolic versatility were more likely to have larger environmental and geographical distributions. Just as trait-based approaches have proven to be so useful for understanding the distributions of animals and plants, we demonstrate that we can use genomic information to infer microbial traits that are difficult to measure directly and build trait-based predictions of the biogeographical patterns exhibited by microbes.


Assuntos
Fenômenos Fisiológicos Bacterianos , Ecossistema , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Genoma Bacteriano , Filogenia , Densidade Demográfica , RNA Ribossômico 16S/genética
19.
ISME J ; 7(8): 1641-50, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23552625

RESUMO

Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing ß-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biodiversidade , Meio Ambiente , Microbiologia do Solo , Agricultura , Bactérias/classificação , Bactérias/genética , Michigan , Plantas/genética , RNA Ribossômico 16S/genética , Solo/química , Fatores de Tempo
20.
ISME J ; 6(5): 1007-17, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22134642

RESUMO

Terrestrial ecosystems are receiving elevated inputs of nitrogen (N) from anthropogenic sources and understanding how these increases in N availability affect soil microbial communities is critical for predicting the associated effects on belowground ecosystems. We used a suite of approaches to analyze the structure and functional characteristics of soil microbial communities from replicated plots in two long-term N fertilization experiments located in contrasting systems. Pyrosequencing-based analyses of 16S rRNA genes revealed no significant effects of N fertilization on bacterial diversity, but significant effects on community composition at both sites; copiotrophic taxa (including members of the Proteobacteria and Bacteroidetes phyla) typically increased in relative abundance in the high N plots, with oligotrophic taxa (mainly Acidobacteria) exhibiting the opposite pattern. Consistent with the phylogenetic shifts under N fertilization, shotgun metagenomic sequencing revealed increases in the relative abundances of genes associated with DNA/RNA replication, electron transport and protein metabolism, increases that could be resolved even with the shallow shotgun metagenomic sequencing conducted here (average of 75 000 reads per sample). We also observed shifts in the catabolic capabilities of the communities across the N gradients that were significantly correlated with the phylogenetic and metagenomic responses, indicating possible linkages between the structure and functioning of soil microbial communities. Overall, our results suggest that N fertilization may, directly or indirectly, induce a shift in the predominant microbial life-history strategies, favoring a more active, copiotrophic microbial community, a pattern that parallels the often observed replacement of K-selected with r-selected plant species with elevated N.


Assuntos
Bactérias/classificação , Metagenômica , Nitrogênio/metabolismo , Filogenia , Microbiologia do Solo , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , Ecossistema , Fertilizantes , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA