Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5444, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673952

RESUMO

Preventing tau aggregation is a potential therapeutic strategy in Alzheimer's disease and other tauopathies. Recently, liquid-liquid phase separation has been found to facilitate the formation of pathogenic tau conformations and fibrillar aggregates, although many aspects of the conformational transitions of tau during the phase transition process remain unknown. Here, we demonstrate that the tau aggregation inhibitor methylene blue promotes tau liquid-liquid phase separation and accelerates the liquid-to-gel transition of tau droplets independent of the redox activity of methylene blue. We further show that methylene blue inhibits the conversion of tau droplets into fibrils and reduces the cytotoxicity of tau aggregates. Although gelation slows down the mobility of tau and tubulin, it does not impair microtubule assembly within tau droplets. These findings suggest that methylene blue inhibits tau amyloid fibrillization and accelerates tau droplet gelation via distinct mechanisms, thus providing insights into the activity of tau aggregation inhibitors in the context of phase transition.


Assuntos
Doença de Alzheimer , Azul de Metileno , Humanos , Azul de Metileno/farmacologia , Proteínas Amiloidogênicas , Citoesqueleto , Transição de Fase
2.
Curr Opin Chem Biol ; 74: 102304, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068388

RESUMO

Proteostasis is maintained by a network of molecular chaperones, a prominent member of which is the 90-kilodalton heat shock protein Hsp90. The chaperone function of Hsp90 has been extensively reviewed previously, emphasizing its ATPase activity and remodeling of folded client proteins. Experimental evidence implicating Hsp90 in neurodegenerative diseases has bolstered interest in the noncanonical chaperoning of intrinsically disordered protein (IDPs), however the interplay between Hsp90 and its disordered clients remains poorly understood. In this review we describe recent advances that have contributed to our understanding of the intricate mechanisms characterizing Hsp90-mediated chaperoning of the IDPs tau and α-synuclein and survey emerging insights into the modulation of the chaperone-client interplay in the context of neurodegeneration.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas , Humanos , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares , Proteostase , Proteínas Intrinsicamente Desordenadas/metabolismo
3.
Nat Commun ; 13(1): 3668, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760815

RESUMO

Alzheimer's disease is a neurodegenerative disorder in which misfolding and aggregation of pathologically modified Tau is critical for neuronal dysfunction and degeneration. The two central chaperones Hsp70 and Hsp90 coordinate protein homeostasis, but the nature of the interaction of Tau with the Hsp70/Hsp90 machinery has remained enigmatic. Here we show that Tau is a high-affinity substrate of the human Hsp70/Hsp90 machinery. Complex formation involves extensive intermolecular contacts, blocks Tau aggregation and depends on Tau's aggregation-prone repeat region. The Hsp90 co-chaperone p23 directly binds Tau and stabilizes the multichaperone/substrate complex, whereas the E3 ubiquitin-protein ligase CHIP efficiently disassembles the machinery targeting Tau to proteasomal degradation. Because phosphorylated Tau binds the Hsp70/Hsp90 machinery but is not recognized by Hsp90 alone, the data establish the Hsp70/Hsp90 multichaperone complex as a critical regulator of Tau in neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Proteínas de Choque Térmico HSP90 , Doença de Alzheimer/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/metabolismo
4.
Alzheimers Res Ther ; 14(1): 15, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35063014

RESUMO

BACKGROUND: Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that mainly affects older adults. One of the pathological hallmarks of AD is abnormally aggregated Tau protein that forms fibrillar deposits in the brain. In AD, Tau pathology correlates strongly with clinical symptoms, cognitive dysfunction, and neuronal death. METHODS: We aimed to develop novel therapeutic D-amino acid peptides as Tau fibrillization inhibitors. It has been previously demonstrated that D-amino acid peptides are protease stable and less immunogenic than L-peptides, and these characteristics may render them suitable for in vivo applications. Using a phage display procedure against wild type full-length Tau (TauFL), we selected a novel Tau binding L-peptide and synthesized its D-amino acid version ISAD1 and its retro inversed form, ISAD1rev, respectively. RESULTS: While ISAD1rev inhibited Tau aggregation only moderately, ISAD1 bound to Tau in the aggregation-prone PHF6 region and inhibited fibrillization of TauFL, disease-associated mutant full-length Tau (TauFLΔK, TauFL-A152T, TauFL-P301L), and pro-aggregant repeat domain Tau mutant (TauRDΔK). ISAD1 and ISAD1rev induced the formation of large high molecular weight TauFL and TauRDΔK oligomers that lack proper Thioflavin-positive ß-sheet conformation even at lower concentrations. In silico modeling of ISAD1 Tau interaction at the PHF6 site revealed a binding mode similar to those known for other PHF6 binding peptides. Cell culture experiments demonstrated that ISAD1 and its inverse form are taken up by N2a-TauRDΔK cells efficiently and prevent cytotoxicity of externally added Tau fibrils as well as of internally expressed TauRDΔK. CONCLUSIONS: ISAD1 and related peptides may be suitable for therapy development of AD by promoting off-pathway assembly of Tau, thus preventing its toxicity.


Assuntos
Doença de Alzheimer , Peptídeos , Proteínas tau , Idoso , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Aminoácidos/uso terapêutico , Células Cultivadas , Humanos , Peptídeos/uso terapêutico , Conformação Proteica em Folha beta , Proteínas tau/metabolismo , Proteínas tau/toxicidade
5.
Chembiochem ; 22(21): 3049-3059, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34375027

RESUMO

Alzheimer's disease and other Tauopathies are associated with neurofibrillary tangles composed of Tau protein, as well as toxic Tau oligomers. Therefore, inhibitors of pathological Tau aggregation are potentially useful candidates for future therapies targeting Tauopathies. Two hexapeptides within Tau, designated PHF6* (275-VQIINK-280) and PHF6 (306-VQIVYK-311), are known to promote Tau aggregation. Recently, the PHF6* segment has been described as the more potent driver of Tau aggregation. We therefore employed mirror-image phage display with a large peptide library to identify PHF6* fibril binding peptides consisting of D-enantiomeric amino acids. The suitability of D-enantiomeric peptides for in vivo applications, which are protease stable and less immunogenic than L-peptides, has already been demonstrated. The identified D-enantiomeric peptide MMD3 and its retro-inverso form, designated MMD3rev, inhibited in vitro fibrillization of the PHF6* peptide, the repeat domain of Tau as well as full-length Tau. Dynamic light scattering, pelleting assays and atomic force microscopy demonstrated that MMD3 prevents the formation of tau ß-sheet-rich fibrils by diverting Tau into large amorphous aggregates. NMR data suggest that the D-enantiomeric peptides bound to Tau monomers with rather low affinity, but ELISA (enzyme-linked immunosorbent assay) data demonstrated binding to PHF6* and full length Tau fibrils. In addition, molecular insight into the binding mode of MMD3 to PHF6* fibrils were gained by in silico modelling. The identified PHF6*-targeting peptides were able to penetrate cells. The study establishes PHF6* fibril binding peptides consisting of D-enantiomeric amino acids as potential molecules for therapeutic and diagnostic applications in AD research.


Assuntos
Peptídeos/farmacologia , Proteínas tau/antagonistas & inibidores , Humanos , Biblioteca de Peptídeos , Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Proteínas tau/metabolismo
6.
Small ; 12(24): 3258, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27306741

RESUMO

Microparticles carrying quick response (QR) barcodes are fabricated by J. Wang and co-workers on page 3259, using a massive coding of dissociated elements (MiCODE) technology. Each microparticle can bear a special custom-designed QR code that enables encryption or tagging with unlimited multiplexity, and the QR code can be easily read by cellphone applications. The utility of MiCODE particles in multiplexed DNA detection and microtagging for anti-counterfeiting is explored.


Assuntos
Telefone Celular , Micropartículas Derivadas de Células , Processamento Eletrônico de Dados
7.
Small ; 12(24): 3259-69, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27151936

RESUMO

Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Lítio/química , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA